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ABSTRACT 

Computer-Aided Detection of Breast Cancer Using Ultrasound Images 

 

by 

 

 

Yanhui Guo, Doctor of Philosophy 

Utah State University, 2010 

Major Professor: Dr. Heng-Da Cheng 

Department: Computer Science 

 

 

Ultrasound imaging suffers from severe speckle noise. We propose a novel 

approach for speckle reduction using 2D homogeneity and directional average filters to 

remove speckle noise. We transform speckle noise into additive noise using a logarithm 

transformation. Texture information is employed to describe the speckle characteristics of 

the image. The homogeneity value is defined using texture information value, and the 

ultrasound image is transformed into a homogeneity domain from the gray domain. If the 

homogeneity value is high, the region is homogenous and has less speckle noise. 

Otherwise, the region is nonhomogenous, and speckle noise occurs. The threshold value 

is employed to distinguish homogenous regions from regions with speckle noise obtained 

from a 2D homogeneity histogram according to the maximal entropy principle. A new 

directional filtering is convoluted to remove noise from pixels in a nonhomogenous 

region. The filtering processing iterates until the breast ultrasound image is homogenous 

enough. Experiments show the proposed method improves denoising and edge-preserving 

capability.  
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We present a novel enhancement algorithm based on fuzzy logic to enhance the 

fine details of ultrasound image features, while avoiding noise amplification and over-

enhancement. We take into account both the fuzzy nature of an ultrasound and feature 

regions on images, which are significant in diagnosis. The maximal entropy principle 

utilizes the gray-level information to map the image into fuzzy domain. Edge and textural 

information is extracted in fuzzy domain to describe the features of lesions. The contrast 

ratio is computed and modified by the local information. Finally, the defuzzification 

operation transforms the enhanced ultrasound images back to the spatial domain. 

Experimental results confirm a high enhancement performance including fine details of 

lesions, without over- or under-enhancement. 

Identifying object boundaries in ultrasound images is a difficult task. We present a 

novel automatic segmentation algorithm based on characteristics of breast tissue and 

eliminating particle swarm optimization (EPSO) clustering analysis, thus transforming 

the segmentation problem into clustering analysis. Mammary gland characteristics in 

ultrasound images are utilized, and a step-down threshold technique is employed to locate 

the mammary gland area. Experimental results demonstrate that the proposed approach 

increases clustering speed and segments the mass from tissue background with high 

accuracy.  

(130 pages) 
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CHAPTER 1   

INTRODUCTION 

1.1 Cancer and Breast Cancer 

One in eight deaths worldwide is due to cancer [1]. Cancer is the second leading 

cause of death in developed countries and the third leading cause of death in developing 

countries. In 2009, about 562,340 Americans died of cancer, more than 1,500 people a 

day. Approximately 1,479,350 new cancer cases were diagnosed in 2009. In the United 

Sates, cancer is the second most common cause of death, and accounts for nearly 1 of 

every 4 deaths [2].  

Breast cancer is the most common, life-threatening cancer among American 

women[3]. The chance of developing invasive breast cancer at some time in a woman's 

life is about 1 in 8 (12%) [4, 5]. Breast cancer continues to be a significant public health 

problem in the world. Approximately 182,000 new cases of breast cancer are diagnosed 

and 46,000 women die of breast cancer each year in the United States [6]. In 2009, 

192,370 new cases of invasive breast cancer were diagnosed among women in the United 

States [3]. Thus, the incidence and mortality of breast cancer are very high, so much so 

that breast cancer is the second leading cause of cancer death in women. The chance that 

breast cancer will be responsible for a woman's death is about 1 in 35 (about 3%) [4]. In 

2009, about 40,610 women died from breast cancer in the United States [7].  

Although breast cancer has very high incidence and death rate, the cause of breast 

cancer is still unknown [4]. No effective way to prevent the occurrence of breast cancer 

exists. Therefore, early detection is the first crucial step towards treating breast cancer. It 

plays a key role in breast cancer diagnosis and treatment.  
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1.2 Breast Cancer Detection Methods 

Breast cancer screening is vital to detecting breast cancer. The most common 

screening methods are mammography and sonography. Of these, mammography is 

probably the most important tool that doctors use to detect, diagnose, and evaluate breast 

cancer. A mammogram is an x-ray photograph of the breast. This technique has been in 

use for about 40 years [8] and is the current ―gold standard‖ for diagnosing breast disease. 

It can reveal breast cancer even when the lump is very small and not palpable. In fact, 

various studies have shown that undergoing regular mammography examinations can 

save lives [6].  

However, mammography still has some disadvantages for breast cancer detection. 

While it is very sensitive, it is not accurate in detecting breast cancer [9]. As a result, 

approximately 65% of cases referred to surgical biopsy are actually benign lesions [10, 

11]. Mammography also has limitations in cancer detection in the dense breast tissue of 

young patients. Most cancers arise in dense tissue, so lesion detection for women in this 

higher risk category is particularly challenging. The breast tissue of younger women 

tends to be dense and full of milk glands, making cancer detection with mammography 

problematic. In mammograms, glandular tissues look dense and white, much like 

cancerous tumors [12]. Furthermore, mammography can identify an abnormality that 

looks like a cancer, but turns out to be normal. Called a false positive, such a 

misdiagnosis means more tests and diagnostic procedures, which is stressful for patients. 

To make up for these limitations, more than mammography is often needed for sound 

diagnosis [13]. Moreover, reading mammograms is a demanding job for radiologists. An 

accurate diagnosis depends on training, experience, and other subjective criteria. About 
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10 percent of breast cancers are missed by radiologists, and most of these are in dense 

breasts [14]. On the other hand, about two-thirds of the lesions that are sent for biopsy are 

benign. The reasons for this high miss rate and low specificity in mammography are the 

following:  the low conspicuity of mammographic lesions, the noisy nature of the images, 

and the overlying and underlying structures that obscure features of a region of interest 

(ROI) [15]. 

Sonography is an important adjunct to mammography to identify, characterize, 

and localize breast lesions, and it has the added advantage of not being limited by dense 

breasts. It also has no radiation or compression [16]. Consequently, sonography is more 

effective for women younger than 35 years of age [17]. Thus, it has proven to be an 

important adjunct to mammography in breast cancer detection and useful for 

differentiating cysts from solid tumors. Furthermore, it has been shown that breast 

sonography is superior to mammography in its ability to detect local abnormalities in the 

dense breasts of adolescent women [18]. Results [19] suggest that the denser the breast 

parenchyma, the higher the detection accuracy of malignant tumors using ultrasound. The 

accuracy rate of breast ultrasound has been reported to be 96-100% in the diagnosis of 

simple benign cysts [20]. Breast ultrasound examination is playing an increasingly 

significant role in detecting breast cancers, due to the fact that sonography can reveal a 

mass otherwise obscured mammgraphically by dense tissue, it is low cost, portable, and 

requires no ionizing radiation [21]. As a result of these advantages, ultrasound  imaging is 

more suitable to large-scale screening and diagnosis. 

Sonography [22] uses high frequency broadband sound waves in the megahertz 

range that are reflected by tissue to varying degrees to produce images. Ultrasound is a 
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gray-scale display of the area being imaged and is used in imaging abdominal organs, 

heart, breast, muscles, tendons, arteries and veins. It can study the function of moving 

structures in real-time and has no ionizing radiation. As well as being very safe to use, it 

is relatively inexpensive and quick to perform. The real time moving image obtained can 

be used to guide drainage and biopsy procedures. In short, ultrasound imaging is 

noninvasive, practically harmless, and cost effective for diagnosis, and it has become one 

of the most prevalent and effective medical imaging technologies [23]. 

A breast ultrasound is an imaging technique that sends high-frequency sound 

waves through breast tissues and converts them into images on a viewing screen. The 

ultrasound examination places a sound-emitting probe on the breast to conduct the test. 

There is no radiation involved. Ultrasound is the best way to find out if the abnormality 

in breast is solid (such as a benign fibroadenoma or cancer) or fluid-filled (such as a 

benign cyst) [12]. 

In the last two decades, breast ultrasound images has become an adjunct to 

mammography to help differentiate benign from malignant lesions [24]. Its benefits of  

safety and cost-effectiveness discussed above [25] have moved ultrasound ultrasound 

techniques into an increasingly important role in the evaluation of breast lesions [26]. 

Like ultrasound exams in general, breast ultrasound exams are relatively inexpensive and 

do not use X-rays or other types of potentially harmful radiation. They can differentiate 

between solid and cystic breast masses, help to define the nature and extent of a mass, 

and show all areas of the breast, including the area closest to the chest wall, which can be 

difficult to study with a mammogram. Consequently, breast examination using ultrasound 

technology has become a major adjunct to mammography. 
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Compared to mammography, breast ultrasound examinations have several 

advantages [19]: 

1. Breast ultrasound examinations can obtain any section image of breast, and 

observe the breast tissues in real-time and dynamically.  

2. Ultrasound imaging can depict small, early-stage malignancies of dense breasts, 

which is difficult for mammography to achieve. 

3. Sonographic equipment is portable and relatively cheap, and has no ionizing 

radiation and side effects. 

Several statistical studies  on the accuracy rate of breast disease diagnosis using 

ultrasonic examination have been carried out  [27, 28] (see Table 1.1). As demonstrated in 

Table 1.1, ultrasound examination has a high detection rate of tumors, in particular of 

malignant tumors. 

However, the ultrasound image itself has some limitations, such as low resolution 

and low contrast, speckle noise, and blurry edges between various organs, so it is more 

difficult for a radiologist to read and interpret an ultrasound image. In addition, 

ultrasound diagnosis is heavily dependent on a doctor's personal experience. This reality 

is compounded by the fact that reading an ultrasound image is tedious, hard work, which 

can lead to fatigue and burn out, which, in turn, can ultimately lead to an increased rate of 

misdiagnosis and missed diagnosis. Therefore, using digital image processing and pattern 

Table 1.1. Accuracy Rate of Breast Disease Diagnosis  

Using Ultrasonic Examination. 

Type 
Ultrasound 

Detection Accuracy 
Benign 

hyperplasia 
84.5% 

Benign tumor 79.0% 

Malignant 

tumor 
88.5% 
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recognition techniques to deal with ultrasound imaging in general  and to apply these 

techniques to clinical breast cancer detection is of critical importance.  

1.3 Computer-aided Detection 

1.3.1 Introduction of Computer-aided Detection  

In order to increase detection and diagnosis accuracy and save to labor, computer-

aided detection (CAD) systems have been developed to help radiologists to evaluate 

medical images and detect lesions at an early stage. In general, CAD is a procedure that 

employs computers to assist doctors in the interpretation of medical images [22]. A CAD 

system is an interdisciplinary technology combining elements of digital image processing 

with radiological image processing. It combines image processing techniques and 

experts’ knowledge for greatly improved accuracy of abnormality detection. In particular, 

the CAD system for automated detection/classification of masses and microclassification 

of clusters can be very useful for breast cancer control. CAD systems can provide doctors 

a ―second pair of eyes,‖ whose consistency and repeatability is very good, thus greatly 

reducing the false negative rate and improving the true positive rate. 

1.3.2 Introduction of Breast Cancer 

        Computer-aided Detection 

A typical CAD application is the detection of tumors in a breast ultrasound image. 

Breast ultrasound CAD systems may help radiologists evaluate ultrasound images and 

detect breast cancer. Such systems are used in addition to the human evaluation of the 

diagnosis. A breast ultrasound CAD system not only improves the ultrasound image 

quality, increases the image contrast, and automatically determines lesion location, and it 

also greatly reduces the human workload associated with the diagnosis, and improves the 
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accuracy of detection and diagnosis. 

Generally, a typical breast ultrasound CAD system includes three steps:  

1. Ultrasound image acquisition 

2. Ultrasound image preprocessing  

a. Speckle reduction to suppress noise 

b. Enhancement to improve the contrast of the image 

3. Ultrasound image segmentation, i.e., locating suspicious regions within the 

digitized ultrasound image. 

The structure of a breast ultrasound CAD system is shown in Figure 1.1. 

 

 

 

 

 

 

 

Figure 1.1. Breast ultrasound CAD system. 

1.4 Methods of Breast Cancer  

     Computer-aided Detection 

 

Because of an ultrasound’s attenuation characteristics, identical textures at 

different depths have a different brightness, and the images are further corrupted by 

speckle noise. Therefore, the first step in breast ultrasound image CAD system is 

preprocessing that suppresses the speckle noise. 

The underlying principles behind preprocessing are to make an image clearer and 

to improve the contrast of the image. The purpose of the enhancement of a breast 

Input Image 

Image segmentation 

Image Preprocessing 

(Image denoise/ Image 

enhancement) 
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ultrasound image is to produce a reliable representation of breast tissue structures by 

enhancing the contrast and suppressing the noise in image. An effective method for 

enhancement must be able to enhance the texture and features of masses for the following 

reasons: (1) the low-contrast of breast ultrasound images; and (2) the typically hard-to-

read masses in breast ultrasound images.  The ideal contrast enhancement approach 

should have neither over-enhancement nor under-enhancement. To address issues that 

arise in preprocessing, this research developed a novel contrast enhancement algorithm 

based on both local and global information. 

A breast cancer CAD scheme separates suspicious regions that may contain 

masses from the background parenchyma – the tissue characteristic of an organ, as 

distinguished from associated connective or supporting tissues. In other words, such 

schemes partition the mammogram into several nonintersecting regions and extract 

regions of interest (ROIs) and suspicious mass candidates from the ultrasound image. 

While a suspicious area is darker than its surroundings, it has a similar density, a regular 

shape of variable size, and fuzzy boundaries, often making a distinction between the area 

and its surroundings difficult. Thus, image segmentation is essential to maintaining the 

sensitivity and accuracy of the entire mass detection and classification system.  

Generally, a breast CAD system uses some image processing methods: image 

denoising, image enhancement and image segmentation. 

1.4.1 Image Denoising 

Digital images play an important role both in daily life applications, such as 

satellite television, magnetic resonance imaging, and computer tomography, as well as in 

areas of research and technology, such as geographical information systems and 
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astronomy [29]. Image noise is generally regarded as an undesirable byproduct of the 

image capture. Image data are generally contaminated by noise. Noise occurs in images 

for many reasons including imperfect instruments, problems with the data acquisition 

process, and interfering natural phenomena. Furthermore, noise can be introduced by 

transmission errors and compression. It is necessary to apply an efficient denoising 

technique to compensate for such data corruption. Consequently, denoising is often a 

necessary and, thus, is typically the first step taken before the image data are analyzed. 

However, image denoising still remains a challenge for researchers because noise 

removal introduces artifacts into the image and causes blurring.  

Generally, image noise includes Gaussian noise, salt and pepper noise, and 

speckle noise. The noise in the image can be categorized into two groups: additive and 

multiplicative models [30].  

Let ( )f   denote an image. We decompose the image into a desired component, 

  ( )g  , and a noise component, ( )q  . The most common decomposition is additive: 

 ( ) ( ) ( )f g q      (1.1) 

For instance, Gaussian noise is usually considered to be an additive component. 

The second most common decomposition is multiplicative: 

 ( ) ( ) ( )f g q     (1.2) 

An example of a noise often modeled as multiplicative is speckle noise. 

Ultrasound imaging uses low-power, high frequency sound waves to visualize the 

body’s internal structures and creates pictures of tissues and organs [31]. As the sound 

waves pass through a body, they are reflected back to the ultrasound machine in different 

ways, depending on the characteristics of the tissues encountered. As stated previously, 



 

 

 

10 

among the currently available medical imaging techniques, ultrasound (US) imaging is 

regarded as a noninvasive, practically harmless, portable, accurate, and cost effective 

method for diagnosis [32]. These properties make US imaging the most prevalent 

diagnostic tool in used in hospitals around the world. 

Unfortunately, the quality (resolution and contrast) of ultrasound image is 

generally degraded due to the existence of special noise, called speckle for short [32-36]. 

Speckle is caused by interference effects of echoes from unresolved random scatters due 

to the coherent nature of ultrasound scanners [33]. It occurs when a coherent source and a 

noncoherent detector are used to interrogate a medium whose surface is rough on the 

scale of a typical ultrasound wavelength. Speckle noise occurs in the images of soft 

organs, such as the liver and kidney, whose underlying structures are too small to be 

resolved by the large wavelength ultrasound uses. Speckle noise degrades image quality, 

and it makes tlow-contrast objects, small high-contrast targets, and small differences hard 

to be detected [33]. Speckle noise can significantly degrade image quality and increase 

difficulties in diagnosis. Therefore, it is important to improve image quality of tissue 

structures by reducing speckle noise. 

Speckle reduction techniques are classified into three groups [34]: filtering 

techniques, wavelet domain techniques, and compounding approaches. Speckle reduction 

techniques are summarized in detail in [34]. 

1.4.2 Image Enhancement 

 

Image enhancement is another important step in image preprocessing techniques. 

The underlying principle of this step is to make the image clearer. Image enhancement 

improves the quality (clarity) of images for human viewing. Increasing contrast and 
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revealing details are important tasks of enhancement operations. The goal of all image 

enhancement is to produce a processed image that is suitable for a given application [35]. 

An image might be required to be easily inspected by a human observer or be analyzed 

and interpreted by a computer.  For example, suppose there is a cell in an image that is of 

low contrast and somewhat blurry. Increasing the contrast range could enhance the image. 

The original image might have areas of very high and very low intensity, which mask 

details. The aim of image enhancement is to improve the interpretability or perception of 

information in images for human viewers, or to provide ―better‖ input for other 

automated image processing techniques [36]. 

Image enhancement is one of the most important issues in low-level image 

processing. Its purpose is to improve the quality of low contrast images and to correct 

deficiencies of the contrast. Therefore, the underlying principle of the enhancement is to 

enlarge the intensity difference among objects or between the pixel and its neighbors with 

the condition that the image itself is not distorted. 

Image enhancement techniques can be divided into two broad categories [35, 36]: 

spatial domain methods, which operate directly on pixels, and frequency domain methods, 

which operate on the Fourier transform of an image. In this dissertation, we primarily 

discuss the spatial domain methods. The enhancement methods in the spatial domain are 

classified as global modification approaches and local processing approaches. The ideal 

contrast enhancement approach should have neither over-enhancement nor under-

enhancement. 

Generally, global methods are implemented by using histogram modification. One 

of the most useful global methods is histogram equalization (HE). The central idea of 
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HE-based methods is to reassign the intensity values of pixels in order to make the new 

distribution of intensities uniform to the utmost extent [37-40]. In contrast enhancement 

techniques, which are often based on HE [37], the pixel values in the image are altered to 

make the distribution of gray level values as uniform as possible. HE can enhance the 

overall visibility of an image, but they can neither increase nor decrease the local contrast 

at some local positions in the image. If this were to occur, a lot of detailed information in 

the image would be ignored. HE is simple and effective in enhancing an entire low-

contrast image containing only single object or no apparent contrast change between the 

object and the background. Otherwise, it does not work well. It is also not effective in 

texture enhancement.  

The authors of [38] proposed a variation of histogram equalization known as 

adaptive histogram equalization (AHE), or local area histogram equalization (LHE), that 

uses a sliding subblock to define an image region for each pixel. The histogram of the 

region is then equalized to determine the output value for the pixel. The LHE procedure 

is computationally intensive because a separate histogram is constructed for each image 

pixel. Dale-Jones  [39] modified LHE by varying the window size over different regions 

of the image in order to enhance each region equally. Although LHE makes more detail in 

the image visible, it is still unsuitable for medical ultrasound image processing due to the 

computational complexity and background distortion. 

Local methods are very effective in image contrast enhancement, and their 

implementation can employ feature-based approaches such that local features are 

obtained by edge detecting operators or local statistic information such as local mean, 

standard deviation, etc. There are many methods that implement contrast enhancement by 
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modifying tpixel features [40-44]. The common feature-based method is to define the 

contrast ratio first, and then enhance the image contrast by increasing the contrast ratio. 

Another way is based on local histogram modification. It uses histogram modification to 

enhance the image contrast in a local area of the image [45-49], such as local histogram 

equalization, local histogram stretching, and nonlinear mapping methods (square, 

exponential, and logarithmic function). The main idea is to define a local function for 

each pixel based on the pixels within a small window centered at the pixel. These 

methods are quite effective in local texture enhancement. However, most of these local 

methods make no contribution to the enhancement of the entire image. To a certain extent, 

the image is distorted since the transformation is not a monotonic mapping and the order 

of gray levels of the original image could be changed.  

It is well known that breast ultrasound images have low contrast and some degree 

of fuzziness, such as indistinct cyst borders, ill-defined mass shapes, and different tumor 

densities, which make it hard to read masses in an image. Therefore, it is necessary to 

employ image enhancement techniques to improve contrast in breast ultrasound images. 

The overarching purpose of ultrasound image enhancement is to increase the visibility of 

the image by enlarging the contrast between the object and background so that more 

image details can be discerned [50]. The processed breast ultrasound image should 

produce reliable representations of breast tissue structures by enhancing the contrast. Any 

effective method for enhancement must enhance texture and features of masses for 

doctors to make a diagnosis.  

1.4.3 Image Segmentation 

 

Image segmentation is a critical technique in image processing. As such, it serves 
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as an important stepping stone towards pattern detection and recognition, which 

determines the quality of the final image analysis. Image segmentation is used to extract 

the meaningful objects from the image [51]. Moreover, it plays an important role in a 

variety of applications such as robot vision, object recognition, and medical imaging. In 

[52], Spirkovska  defines image segmentation as a bridge between a low level vision 

subsystem and a high level vision subsystem. 

To understand an image, one needs to isolate the objects in it and find 

relationships among them [51]. Image segmentation divides an image into several 

segments wherein each segment is visually coherent. Thus, image segmentation can be 

defined as a process that divides an image into different regions such that each region is 

homogeneous, but the union of any two adjacent regions is not homogeneous; i.e., it is a 

partition of image I  into non-overlapping regions 
i

S  [53]: 
i

S I  and 
i j

S S   , i j .  

While it markedly influences the final result of the analysis, image segmentation 

is one of the most difficult tasks within the broader image processing field. Because 

many features such as intensity, blurring, contrast, and even the number of segments 

affect the quality of segmentation, it is not easy to extract all meaningful objects correctly 

and precisely from an image without any human interaction or supervision [54]. 

Several segmentation approaches have been proposed.  Gray image segmentation 

approaches are based on either discontinuity and/or homogeneity of gray level values in a 

region. Discontinuity-based approaches tend to partition an image by detecting isolated 

points, lines, and edges according to abrupt changes in gray levels. Other segmentation 

methods include [53] edge-based methods, threshold methods, region-based methods and 

clustering-based methods. 
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Image segmentation is the second stage of mass detection using CAD schemes, 

which separating suspicious regions that may contain masses from background 

parenchyma, i.e., partitioning the breast ultrasound image into several non-intersecting 

regions, and extracting ROIs and suspicious mass candidates from the ultrasound image. 

A suspicious area is an area that is darker than its surroundings, has almost the same 

density, has a regular shape with varying size, and has fuzzy boundaries. This is a very 

essential and important step that determines the sensitivity of the entire system. 

Segmentation methods do not need to be exacting in finding mass locations, but the result 

for segmentation should include regions containing all masses. The goal for segmentation 

is to obtain the suspicious areas to assist radiologists in diagnosis [34]. The result of a 

good segmentation depends on a suitable algorithm for specific features. According to 

their natures, there are four kinds of breast ultrasound image segmentation techniques [34, 

55], histogram thresholding, active contour model, Markov random field, and neural 

network methods. Segmentation techniques are summarized in [34, 55]. 

This research focuses on developing a novel CAD system for the automatic 

detection of masses in breast ultrasound images. The rest of this dissertation is organized 

as follows. Chapter 2 discusses a novel speckle reduction method to remove the noise on 

the breast ultrasound images. Chapter 3 discusses a novel automatic enhancement 

approach to increase the contrast of the breast ultrasound images. Chapter 4 presents the 

adaptation of the particle swarm optimization and clustering analysis algorithm for 

segmenting the suspicious areas from the background. Finally, Chapter 5 gives 

conclusions and directions for future work.  

 



 

 

 

16 

CHAPTER 2 

SPECKLE REDUCTION ON ULTRASOUND IMAGES 

Ultrasound medical imaging uses low-power, high frequency sound waves to 

visualize the body’s internal structures and create pictures of tissues and organs [31]. As 

the sound waves pass through a body, they are reflected back to the ultrasound machine 

in different ways, depending on the characteristics of the tissues encountered. Among the 

currently available medical imaging techniques, ultrasound (US) imaging is regarded as a 

noninvasive, practically harmless, portable, accurate, and cost effective method for 

diagnosis [32]. These properties make US imaging the most prevalent diagnostic tool in 

nearly all hospitals around the world. 

Unfortunately, the quality, i.e., resolution and contrast, of ultrasound imaging is 

generally limited by noise, also called speckle [32, 56-59]. Speckle noise occurs when a 

coherent source and a noncoherent detector are used to interrogate a medium, whose 

surface is rough on the scale of a typical ultrasound wavelength. Especially, speckle noise 

occurs in the images of soft organs such as the liver and kidney whose underlying 

structures are too small to be resolved by the large wavelengths used in ultrasound. 

Speckle noise can significantly degrade image quality and thus increase difficulties in 

diagnosis. 

2.1 Summary of Speckle Reduction Methods 

2.1.1 Filtering Methods 

Several filters have been proposed for reducing speckle noise: linear filters [56, 

57, 60], temporal averaging [57, 61], and median filter [62, 63]. The method proposed in 
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[64] combines a series of nonlinear filters for speckle reduction. The authors state that the 

combination of averaging and nonlinear Gaussian filtering improves image quality. 

However, the method is developed mainly for additive random noise reduction and has 

little success in speckle suppression. The authors of [65] report that the linear filtering is 

far from being an optimal tool for suppressing speckle noise because it tends to reduce 

noise at the expense of overly smoothing the image. Additionally, the image further 

suffers from the loss of important details, such as small vessels and texture patterns, due 

to blurring [66].  

Median filtering eliminates impulsive artifacts in an area smaller than half of the 

region being examined. When a speckle’s size is larger than the filter’s size, it remains 

unaltered [67].  Several adaptive filters have been studied [68-75]. They work well when 

applied to uncompressed backscattered envelope signals, but they are severely inaccurate 

with log-compressed signals. Moreover, the parameters (such as the size of the 

neighborhood, the structure, and the speckle thresholds) used in these methods may not 

correlate well with the actual speckle models [66]. Adaptive median filters have also been 

studied [76, 77]. Using these techniques, the pixel value is replaced by the weighted 

median of a local neighborhood whose size is determined according to the signal to noise 

ratio (SNR). Such techniques eliminate speckle artifacts smaller than half of the size of 

the region being examined; however, it also removes many important fine details [65]. 

A directional median filter is presented for boundary-preserving speckle reduction 

in [78]. The technique applies a bank of one-dimensional median filters, and retains the 

largest value among all filters’ outputs at each pixel. The nonlinear diffusion method [64-

80] can be regarded as an adaptive filter, whose diffusion (smoothing) direction and 
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strength are controlled by an edge detection function. One speckle-reducing anisotropic 

diffusion (SRAD) [79] exploits an instantaneous coefficient of the variation as an edge 

detector for speckled imagery. However, the SRAD is only for uncompressed echo 

envelope images, and its performance declines when it is directly applied to log-

compressed images. In addition, a speckle detector that simply combines the gradient 

magnitude and Laplacian may not perform well for the boundaries between regions with 

different gray levels. An approach for speckle reduction and coherence enhancement was 

presented based on a nonlinear coherent diffusion (NCD) model [66]. This approach 

combines three different models: isotropic diffusion, anisotropic coherent diffusion, and 

mean curvature motion. It changes progressively from isotropic diffusion through 

anisotropic coherent diffusion to, finally, mean curvature motion, thus producing speckle 

regions fully formed by maximally low-pass filtering, and substantially preserving 

information associated with the resolved-object structures. The disadvantage of the NCD 

model is that a nonselective Gaussian smoothing filter is needed before estimating 

structure tensors, which may eliminate feature details smaller than the smoothing kernel. 

A diffusion stick method for speckle suppression was presented in [80]. An asymmetric 

stick filter kernel is defined by decomposing the rectangle neighborhood into line 

segments of various orientations. However, it is sensitive to the size and shape of the 

stick. Moreover, the nonlinear diffusion technique relies on the gradient operator which 

cannot separate signal and noise precisely. 

In summary, although some despeckle filters are said to be ―edge preserving‖ and 

―feature preserving,‖ they have limitations. In addition, despeckle filters are not 

directional [81].  
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2.1.2 Wavelet-based Methods 

In wavelet-based techniques, an image is decomposed into multiple scales, and 

various methods are used to reduce the speckle noise in multi-resolution domains. These 

are generally referred as wavelet shrinkage techniques. Wavelet shrinkage has been 

applied to speckle reduction of SAR images [82]. A soft thresholding method for 

denoising 1D signals was studied in [83]. 

Wavelet based techniques can be classified into two categories: thresholding and 

Bayesian framework. Most thresholding techniques [84-86] are based on soft-

thresholding denoising, also referred to as wavelet shrinkage techniques. The signal is 

decomposed in the wavelet domain, and the obtained wavelet coefficients are soft-

thresholded. The wavelet coefficients whose absolute values are below a threshold are 

replaced by zero, while the others are modified by shrinking toward zero.  

Thresholding methods suffer from two major drawbacks. First, the problem of 

how to find the optimal solution for all types of images has not yet been solved. Second, 

it is unadvisable to use the same noise model for diverse resolutions, since the selected 

threshold may not match up well with the specific distribution of signal and noise 

components in all scales. 

Nonlinear estimators based on Bayesian theory were developed in [87], and these 

outperform the classical linear processors and simple thresholding estimators. The 

authors used a generalized Laplacian model for the subband statistics of the signal and 

developed a noise-removal algorithm that performs a ―coring‖ operation to preserve high-

amplitude observations while suppressing low-amplitude values from the high-pass bands. 

Wavelet-based denoising methods have also been developed within a Bayesian 

framework [88-91]. The logarithmic transform of the image is analyzed in the multiscale 
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wavelet domain. Then, a Bayesian estimator is designed to exploit the sub-band 

decomposition statistics. Finally, an alpha-stable model is utilized to perform a nonlinear 

operation. 

Most wavelet-based methods use a multiplicative model and take advantage of the 

logarithmical transformation to convert multiplicative speckle noise into additive noise. 

The common assumption in a large number of such studies is that the samples of the 

additive noise are mutually uncorrelated and obey a Gaussian distribution. However, as 

demonstrated both conceptually and experimentally in [65], this assumption is generally 

oversimplified and unnatural. Moreover, it may lead to an inadequate performance in 

speckle reduction. Table 2.1 summarizes speckle reduction methods [34].  

 

 

Table 2.1. Speckle Reduction Methods [34]. 

 

Method Description Advantage Disadvantage 

Filtering 

Techniques 

Use moving window to 

convolve the filter with 

the image to reduce 

speckle. 

Simple and fast. 1. Single scale representation 

is difficult to discriminate 

signal from noise. 

2. Sensitive to the size and 

shape of the filter window. 

Wavelet 

Domain   

Transform image to 

wavelet domain and 

remove noise based on 

wavelet coefficients. 

1.When 

decomposed to 

wave- let domain, 

the statistics of 

many signals are 

simplified. 

2. Noise and signal 

are pro- cessed at 

different scales and 

orientations 

proportionally. 

Wavelet transformation and 

inverse wavelet 

transformation increase time 

complexity. 
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2.2 Speckled Ultrasound Image Model 

In order to reduce speckle noise in US images effectively, having precisely 

formulated models of speckled noise would be useful. However, a universally accepted 

speckle noise model is still under investigation. Nevertheless, a number of possible 

formulations are proposed. A generalized model of the speckle imaging [84, 88] is given 

by: 

 ( , ) ( , ) ( , ) ( , )g i j f i j u i j i j   (2.1) 

where g, f, u, and ξ are the observed envelope image, original image, multiplicative, and 

additive components of the speckle noise, respectively.  

Despite its possible theoretical shortcomings [92], the model in Eq.(2.1) has been 

used in ultrasound and SAR imaging. Moreover, when applied to US images, only the 

multiplicative component u of the noise need be reckoned with. Thus, the model in Eq. (1) 

can be simplified as: 

 ( , ) ( , ) ( , )g i j f i j u i j  (2.2) 

There exists an alternative model [76, 86, 93], describing speckle noise as the 

additive noise, and its amplitude is proportional to the square root of the image. However, 

this model was proposed to account for a speckle pattern, as it appears ―on screen,‖ after 

a sequence of standard processing steps performed by a typical ultrasound scanner (e.g., 

nonlinear amplification, dynamic-range adjustment via logarithmic compression, etc.). 

Consequently, Eq. (2.2) assumes that the image ( , )g i j  has been observed before the 

process is applied.  

To transform the multiplicative noise model into an additive one, the logarithmic 

function is applied to both sides of Eq. (2.2) 
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 ( , ) ( , ) ( , )
l l l

g i j f i j u i j   (2.3) 

where 
l

g , 
l

f  and 
l

u , are  the logarithms of g  f  and u , respectively.  

After the image is applied by the logarithmic function, the speckle noise becomes 

an additive noise. Next, the speckle reduction process becomes one of rejecting an 

additive noise, and a variety of noise suppression techniques could be invoked to perform 

this task. 

In this dissertation, the original US images are processed using the logarithm 

transformation, and the speckle noise is modeled as the additive noise.  

2.3 Proposed Method 

In order to overcome the disadvantages of filters, we propose an algorithm for 

speckle reduction based on the textural homogeneity histogram. Homogeneity is used to 

describe the speckle characteristics. The homogeneity value is defined using the texture 

information and the image is transformed from the gray domain into the homogeneity 

domain. If the homogeneity value is high, the region is homogenous, and there are few 

speckles. Otherwise, the region is nonhomogenous, and speckles exist. A 2D 

homogeneity histogram is built, and the threshold is determined using the maximal 

entropy principle. The pixels are divided into two sets according to the threshold: a 

homogenous set Hs , and a nonhomogenous set, NHs . Finally, the pixels in the 

nonhomogenous set are handled according the neighbor pixels iteratively, and the speckle 

noise is removed without blurring the edges. 

The proposed method includes four steps: 

Step 1: Build a 2D homogeneity histogram using texture information; 

Step 2: Select threshold values based on the 2D homogeneity histogram in Step 1; 
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Step 3: Handle the nonhomogenous set using directional average filters; 

Step 4: Repeat Steps 1 through 3 until the termination criteria is satisfied. 

2.3.1 Building a 2D Homogeneity Histogram 

2.3.1.1  Texture Information Extraction 

On ultrasound images of the human body, different organs and tissues have 

different texture information. Historically, texture has been utilized as an important 

feature for diagnosis, because texture analysis provides a good tool for detecting lesions 

and diagnosing diseases. In this chapter, Laws’ texture energy measures (TEM) [37] are 

utilized to characterize the textural properties of an ultrasound image. TEM seeks to 

classify each pixel of an image by transforming each pixel into a texture energy plane. 

The transform is fast, requiring only convolutions and simple moving window techniques 

[94].  

In the TEM method, texture in an image is described using five features: average 

gray level, edges, spots, ripples, and waves.  These are derived from five simple one-

dimensional filters: 

 

5 [1 4 6 4 1]

5 [ 1 2 0 2 1]

5 [ 1 0 2 0 1]

5 [ 1 2 0 2 1]

5 [1 4 6 4 1]

L

E

S

W

R



  

  

  

  

 (2.4) 

where the masks L5, E5, S5, W5 and R5 are employed to detect level, edges, spots, 

ripples and waves features, respectively. 

By mutually multiplying these five vectors, the four 5x5 Laws’ masks: 5 5
T

L E , 

5 5
T

L S , 5 5
T

E L  and 5 5
T

S L  are obtained [95]: 
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1 2 0 2 1

4 8 0 8 4

5 5 6 12 0 12 6

4 8 0 8 4

1 2 0 2 1

T
L E

  

 
 
 

    
 
  

   

   

1 0 2 0 1

4 0 8 0 4

5 5 6 0 12 0 6

4 0 8 0 4

1 0 2 0 1

T
L S

  

 
 
 

    
 
  

     

1 4 6 4 1

2 8 12 8 2

5 5 0 0 0 0 0

2 8 12 8 2

1 4 6 4 1

T
E L

     

 
    
 

  
 

 

 
 

   

1 4 6 4 1

0 0 0 0 0

5 5 2 8 12 8 2

0 0 0 0 0

1 4 6 4 1

T
S L

     

 

 

  
 

 

      

 

The texture value of pixel ( , )i j , ( , )f i j , is computed: 

 2 2 2 2

5 5 5 5 5 5 5 5
( , ) ( ( , )) ( ( , )) ( ( , )) ( ( , ))T T T T

L E L S E L S L
f i j f i j f i j f i j f i j

   
     (2.5) 

where 
5 5

( , )T
L E

i jf


, 
5 5

( , )T
L S

i jf


, 
5 5

( , )T
E L

i jf


 and 
5 5

( , )T
S L

i jf


 are the convoluted results of 

the intensity ( , )g i j  with the four masks (0 1,  0 1)i H j W      . H and W  are the 

height and width of the image, respectively. 

Next, the value of the texture information is normalized. 

 
( , )

( , )
m in

m ax m in

f i j f
F i j

f f





 (2.6) 

where { ( , )}
max

f max f i j  and { ( , )}
min

f min f i j  ( 0 1i H   , 0 1j W   ).  

2.3.2.2 2D Homogeneity Histogram 

The value of the homogeneity of each pixel is normalized into the range of [0, K] 

(K is a constant to normalize the homogeneity values). Here, 100K   

 ( , ) (1 ( , ))Ho i j K F i j      (2.7) 

The local mean value of homogeneity, ( , )Ho i j , is computed as: 
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( 1) / 2 ( 1) / 2

( 1) / 2 ( 1) / 2

1
( , ) ( , )

i w j w

m i w n j w

Ho i j Ho m n
w w

   

     

 
  

 
   (2.8) 

where w  is the local widow size. Here, 5w  . 

Finally, a 2D homogeneity histogram (homogram) 
,

( , )
H o H o

h m n  is built based on 

( , )Ho i j  and ( , )Ho i j . 

  ,

0 i H-1,0 j 1

( , ) ( , ) , ( , )

Ho m Ho
min max

Ho n Homin max

Ho Ho

W

h m n Ho i j m H o i j n

 

 

    

    (2.9) 

 
1 0

( , )
0

p q
p q

otherw ise


 
 


 (2.10) 

where 
min

Ho  and 
max

Ho  are the minimal and maximal homogeneity values, 
m in

H o  and 

m ax
H o are the minimal and maximal mean values of the homogeneity, respectively.  

2.3.2  Select Threshold Values Based on  

2D Homogeneity Histogram 

First, the homogeneity of each pixel and the mean of the homogeneities of its 

neighborhood are calculated, and a 2D homogram is built. Next, the value of 

homogeneity threshold ( , )thth
T Ho Ho  is determined based on the maximal entropy 

principle which is calculated from the 2D homogram. The pixels having the homogeneity 

values and mean values higher than ( , )thth
T Ho Ho  are unchanged, and the other pixels are 

processed by the novel directional average filter. The process iterates until it stops. 

An automatic method to determinate the homogeneity threshold is proposed based 

on the characteristics of the 2D homogram. Let ( , )Hop i j  be the probability distribution at 

the homogeneity i  and mean homogeneity j , , 1, 2, ,i j N . 

( ( , ), ( , ))N max Ho m n Ho m n 
 

. Two groups, HoF  and HoB , are classified according to 
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the threshold, representing the foreground and background in the homogeneity domain, 

and their entropies are defined as: 

 
1 1

( , ) ( , )
( , ) ln

( , ) ( , )

s t

H oB

i j

H op i j H op i j
H s t

H oP s t H oP s t 

    (2.11) 

 
1 1

( , ) ( , )
( , ) ln

1 ( , ) 1 ( , )

N N

H oF

i s j t

H op i j H op i j
H s t

H oP s t H oP s t   

 
 

   (2.12) 

 
,

1
( , ) ( , )

ho ho
Hop i j h i j

H W



 (2.13) 

 
1 1

( , ) ( , )

s t

i j

H oP s t H op i j

 

    (2.14) 

where ( , )
HoF

H s t  represents the 2D entropy of the foreground and ( , )
HoB

H s t  represents the 

2D entropy of the background. ( , )HoP s t  is the sum of ( , )Hop i j  whose coordinates 

are lower than ( , )s t . 

The maximum entropies of the foreground and background are computed, and the 

threshold can be obtained by: 

  
1

1

( , ) ( , )( , ) m ax
t N

thth H oF H oB
s N

H Hs t s tT H O H O Arg
 

 

   (2.15) 

Once the threshold ( , )thth
T Ho Ho  is obtained, the pixels are divided into two sets, 

Hs  and NHs :  

 { ( , ),   ( , ) ( , ) }thth
Hs P i j Ho i j Ho and Ho i j Ho  (2.16) 

 { ( , ),   ( , ) ( , ) }thth
NHs P i j Ho i j Ho or Ho i j Ho  (2.17) 

where Hs  is the homogenous set and NHs  is the nonhomogenous set. ( , )P i j  is the pixel 

at the coordinates ( , )i j . 
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2.3.3  Handling the Nonhomogenous Set 

The nonhomogenous pixels are handled by the novel directional average filters 

( DAF ) to reduce the speckle noise, and the pixels on the edges become more distinct: 

 
( , ) ( , )

( , )
( ( , )) ( , )

g i j i j H s
g i j

D AF g i j i j N H s
 (2.18) 

where ( )DAF   is the directional average filter function. 

The conventional average filter has no directions, and it removes noise while 

making the edge blurry. However, the proposed directional average filter can reduce noise 

and enhance the edge at the same time.  

A pixel direction is determined according to neighboring information. In Figure 

2.1(a), the pixel direction is called all-directional. The pixel direction is horizontal in 

Figure 2.1(b), and the pixel direction is vertical in Figure 2.1(c). If the value of the 

horizontal edge is higher than the value of the vertical edge, the pixel direction is 

horizontal; if the value of the vertical edge is higher than the value of the horizontal edge, 

the pixel direction is vertical; otherwise, the pixel direction is all-directional. 

 

Figure 2.1. A pixel’s direction. 
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A Sobel operator [96], whose function is \an edge operator, is utilized to compute 

the edge values because of its high speed and simplicity. The edge values are normalized: 
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where ( , )
h

e i j  and ( , )
v

e i j  are the absolute values of the horizontal and vertical edge 

values obtained using the Sobel operator, 
max

( ( , ),  ( , ))
h v

e max e i j e i j , and 

min
( ( , ),  ( , ))

h v
e min e i j e i j  ( 0 1,  0 1i H j W      ).  

The image is processed by a directional average filter (DAF). The DAF has three 

masks according to the pixels’ directions: 
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where 
1

M , 
2

M , and 
3

M  are the masks with a 3x3 size to process all-directional, 

horizontal, and vertical pixels, respectively. 
1

R , 
2

R , and 
3

R  are the filtering results when 

the image is convoluted with 
1

M , 
2

M  and 
3

M , and cov( )  is the convolution function. 

The function of the directional average filter DAF  is defined as: 
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where 
l

  is the variance in the local window. If ( , ) ( , )Eh i j Ev i j , the region is smooth, 

and the result after average filtering replaces the current intensity; and if ( , ) ( , )Eh i j Ev i j , 

the edges exist in the local region, and the edge values are enhanced and replaced by the 
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weighted directional filtering results. 

2.3.4 Terminating the Iterative Process 

After the pixels in the nonhomogenous set are handled by the iterative process, 

the speckle noise decreases. If the iterative process is conducted, most of the speckle 

noise can be eliminated, while the edges and details are preserved. A criterion should be 

used to terminate the iterative process. We use the homogenous ratio HR  as the criterion 

to terminate the iterative process. If HR  is low, the image is nonhomogeneous, and the 

iterative process should continue. Otherwise, the iterative process should stop. 

The homogenous ratio is defined as: 

 
( )Num Hs

HR
H W

 (2.24) 

where ( )Num Hs  is the number of elements in Hs . H  and W  are the height and width of 

the image, respectively. 

The procedure to terminate the iterative process is as follows: 

Step 1: Calculate [ ]H R i ; 

Step 2: If  [ ]HR i HRTh ,  then terminate the process; 

Else 1i i   go to Step 1; 

The value of HRTh  is determined experimentally, and for our purposes is equal to 

0.9. 

The directional average filters are employed iteratively to remove noise, make the 

image more homogenous, and increase the homogenous ratio. Finally, it reaches 

convergence and terminate the process.  
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2.4 Experimental Results and Discussion 

Various breast ultrasound images were used in the experiments. To assess the 

performance of the proposed method, the results by the proposed method were compared 

with those obtained by a wavelet based method [85] and median filter. 

2.4.1  Performance Evaluation on Synthetic Images 

There is no speckle–free US image in reality, and there is not a universally 

accepted criterion for evaluating the performance of the speckle reduction algorithms as 

well. We start with a synthetic image first. Figure 2.2(a) is a synthetic image with two 

intensities: 63 and 127. Figure 2.2(b) is an image with speckle noise. Figure 2.2(c) is the 

result obtained by the wavelet based method [85]. Figure 2.2(d) and (e) are the results 

obtained after applying the median filter and Wiener filter, respectively. Figure 2.2(f) is 

the result obtained after applying the proposed approach. 

In order to quantify the performance of the methods, some metrics were studied. 

Although the signal to noise ratio (SNR) was used to assess noise reduction for many 

applications, it is not adequate to evaluate suppression performance of multiplicative 

noise. To solve this problem, the signal-to-mean square error (SMSE) ratio is employed 

[88]. In our experiments, three metrics: SMSE, coefficient of correlation   and edge 

preservation measure  [97], were computed for the ―noise-free‖ and processed images, 

respectively. 
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(a)                                                            (b) 

    

(c)                                                            (d) 

    

(e)                                                            (f) 

Figure 2.2. A synthetic image. (a) The synthetic noise-free image. (b) image (a) 

speckle noise  added. (c) result of the median filter. (d) result of the Wiener filter. 

(e) result of the wavelet based approach.  (f) result of the proposed method. 
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The signal-to-MSE (SMSE) ratio was calculated to evaluate the noise suppression 

for the multiplicative noise: 
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where 
i

S  is the ith  pixel in the original image, iS  is the ith  pixel in the image after 

speckle reduction, and K  is the image size. 

We are interested in not only suppressing speckle noise, but also in preserving the 

edges which often constitute features for diagnosis. Hence, we also utilize the correlation 

measure   and edge preservation measure   [97]: 
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where  S  and S  are the original image and the image after speckle reduction, and  S  and 

S  are the mean values of S  and S , respectively. S  and  S  are the high-pass filtered 

versions of S  and S  obtained with a 3×3 Laplacian operator, and S  and S  are the 

mean values of S  and S , respectively. 

To evaluate the performance quantitatively, the US images with different levels of 

speckle noise can be produced [88]: 

 ( , ) ( , ) ( , )I i j S i j V i j   (2.29) 
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where ( , )S i j  is the reference, noise-free ultrasound image and ( , )V i j  is a unit mean 

complex Gaussian random field. By changing the variance of the Gaussian random field, 

images with different noise levels can be generated. 

The comparisons of SMSE,   and   between the wavelet-based method, median 

filter, Wiener filter, and the proposed method are shown in Figures 2.3, 2.4 and 2.5, 

respectively. We can see that the values of SMSE,   and   of the proposed method are 

higher than those of the wavelet-based approach, median filter, and Wiener filter at all 

noise levels, thus demonstrating that the proposed method performs better than the 

wavelet-based approach, median filter, and Wiener filter both in suppressing speckle 

noise and preserving the edges. 

 

Figure 2.3. Comparison of SMSE using different speckle reduction methods: *: 

the proposed method; x: the wavelet based method; o: the Wiener filter; +: 

median filter. 
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Figure 2.4. The curve of Rho using different speckle reduction methods: *: the 

proposed method; x: the wavelet based method; o: the Wiener filter; +: median 

filter. 
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Figure 2.5. The curve of Beta using different speckle reduction methods: *: the 

proposed method; x: the wavelet based method; o: the Wiener filter; +: median 

filter. 

2.4.2  Experiments on Breast Ultrasound Images 

We assessed the performance of the proposed method using clinical BUS images. 

As mentioned before, there is no clinical speckle-free ultrasound image. Therefore, we 

used images processed by a homomorphic Wiener filter to approximate speckle-free 

images [85]. In order to compare the proposed method and the wavelet-based method, we 
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adopted the approach to obtain the speckle-free images [85]. 

Figures 2.6(a), 2.7(a), 2.8(a), and 2.9(a) are the original images, Figures 2.6(b)-  

through 2.9(b) are the results obtained by using the wavelet-based method [85], and 

Figures 2.6(c) through 2.9(c) are the results obtained by using the proposed algorithm. 

The values of the three metrics are described in Table 2.2. From the metrics values in 

Table 2.2 clearly indicates that the proposed method performs better than the wavelet-

based approach not only in speckle noise reduction but also in edge preservation. 

Figure 2.6(a) has a loose mass at the right region, which is an important feature in 

distinguishing malignant tumors. The mass is affected by speckle noise, and the edges are 

unclear. The situation is not improved much in Figure 2.6(b). However, in Figure 2.6(c), 

the speckles on the mass are removed, and the edges become distinct. In addition, some 

of the speckles appear in the middle line-like area, which relate to the muscle’s texture 

characteristics. In Figure 2.6(b), the speckles are not depressed enough; however, they are 

reduced effectively in Figure 2.6(c). Severe speckle noise appears in Figure 2.7, and 

many regions have become nonhomogenous. In Figure 2.7(c), the lesion features are 

significantly improved. Figures 2.8 and 2.9 also compare performance on speckle 

reduction and edge preservation, and clearly demonstrate that the proposed approach 

outperforms other methods. 

Table 2.2. Metric Comparison Between Two Methods. 

Image 
Wavelet-based method The proposed method 

SMSE     SMSE     

Figure 2.6 17.81 0.54 0.53 22.98 0.95 0.93 

Figure 2.7 17.62 0.62 0.61 18.05 0.79 0.72 

Figure 2.8 17.75 0.63 0.61 21.58 0.73 0.66 

Figure 2.9 16.17 0.50 0.49 18.02 0.81 0.75 
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(a) 

 
(b)                                                     

 
(c) 

Figure 2.6. First example of breast ultrasound image and its results after 

speckle reduction. (a) Clinical BUS image. (b) Result using the wavelet-

based approach. (c) Result using the proposed method. 
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(a) 

 
(b) 

 
(c) 

Figure 2.7. Second example of breast ultrasound image and its results after 

speckle reduction. (a) Clinical BUS image. (b) Result using the wavelet- 

based approach. (c) Result using the proposed method. 
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(a) 

 
(b) 

 
 (c) 

Figure 2.8. Third example of breast ultrasound image and its results after 

speckle reduction. (a) Clinical BUS image. (b) Result using the wavelet-

based approach. (c) Result using the proposed method. 
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(a) 

 
 (b) 

 
 (c) 

Figure 2.9 Fourth sample of breast ultrasound image and its results after 

speckle reduction. (a) Clinical BUS image. (b) Result using the wavelet 

based approach. (c) Result using the proposed method. 
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2.4.3  Experiments on Vascular Ultrasound Images 

In order to test performance on edge perseveration, we evaluated the proposed 

method using some clinical vascular images. Figures 2.10(a) and 2.11(a) are the original 

images, and Figures 2.10(b) and 2.11(b) are the results by the proposed algorithm. 

Figure 2.10 is a cross section of the carotid, in which the circular boundary of the 

carotid is blurry and corrupted by speckle noise. In Figure 2.10(b), the circular boundary 

of the carotid becomes distinct, and the noise is removed.  

Furthermore, in Figure 2.11, some horizontal edges become broken due to speckle 

noise, whil in Figure 2.11(b), these edges are significantly enhanced. Figures 2.10 and 

2.11 demonstrate that the proposed approach performs better in speckle reduction and 

edge preservation. 

2.4.4  Experiments on Clinical Breast Cancer Diagnosis 

To evaluate its performance, we applied the proposed method to clinical breast 

ultrasound (BUS) images. The breast ultrasound images used in the experiments were 

provided by the Second Affiliated Hospital of Harbin Medical University, Harbin, China. 

The images were collected by using a VIVID 7 (GE, USA) with a 5-14 MHz linear probe, 

and captured directly from video signals.  

The database consists of 349 images of 115 cases, and each single lesion is in one 

image. Of the 115 cases, 59 were benign solid lesions (165 images), and 56 were 

malignant solid lesions (184 images). All lesions were confirmed by biopsy or operation, 

and the tumors were outlined by radiologists. 349 original images were processed using 

the proposed algorithm. The original images and speckle-reduced images were randomly 

given to experienced radiologists who did not know the initial diagnostic results. 
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(a)                                                                    (b) 

Figure 2.10. First example of vascular ultrasound image and the result 

after speckle reduction. (a) Original vascular ultrasound image. (b) Result 

using the proposed method. 

 

   

(a)                                                                    (b) 

Figure 2.11. Second example of vascular ultrasound image and the result 

after speckle reduction. (a) Original vascular ultrasound image. (b) Result 

by the proposed method. 
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The diagnosis results were divided into five categories: (1) benign, (2) probably 

benign, (3) possibly benign/malignant, (4) probably malignant, and (5) malignant. The 

results before and after speckle reduction were tested by Chi-square method in a 2×2 

table. The diagnostic results by radiologists based on the original images and speckle-

reduced images are shown in Tables 2.3 and 2.4, respectively. 

Using the proposed method, after the speckles in the BUS images are removed 

and the edges are preserved, the images become distinct, the regions become more 

homogeneous, and the boundaries of the regions are distinct, making them more suitable 

for mass detection and classification. 

The diagnosis results in Tables 2.3 and 2.4 show that a definitive and correct 

diagnosis can be increased from 61 cases of the original images (32 malignant cases and  

Table 2.3.  Ultrasound Diagnostic Results Based on the Original Images. 

 

 

Table 2.4. Ultrasound Diagnostic Results Based on the Speckle Reduction Images. 

 

Ultrasound 

Pathology 
benign 

probably 

benign 

possibly 

benign/malignant 

probably 

malignant 
malignant Total 

benign 29 9 11 5 5 59 

malignant 4 3 7 10 32 56 

Ultrasound 

Pathology 
benign 

probably 

benign 

possibly 

benign/malignant 

probably 

malignant 
malignant Total 

benign 38 8 8 4 1 59 

malignant 1 2 4 6 43 56 
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29 benign cases) to 81 cases of the speckle-reduced images (43 malignant cases and 38 

benign cases). 

The breast cancer diagnosis results were evaluated using a receiver operating 

characteristic (ROC) curve based on the above sensitivity and specificity values, as 

shown in Figure 2.12. The diagnostic sensitivity and specificity were calculated by the 

areas (Az) under the ROC curves. The results indicate that the value of Az without 

speckle reduction was 0.843 compared to 0.955 with speckle reduction using the 

proposed approach. An analysis of the original images yielded an area Az1 (0.843) under 

the ROC curve, and its 95% confidence interval was [0.769, 0.917]. While the analysis of 

the speckle-reduced images yielded an area Az2 value (0.955) under the ROC curve, and 

its 95% confidence interval was [0.917, 0.992]. Thus, using the speckle reduction 

algorithm greatly improves the accuracy of diagnosis of the breast lesions. 

 

 

 

Figure 2.12. ROC curves using the original and speckle reduced BUS images. 
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The experiments have shown that the proposed approach can significantly 

enhance the contours and the fine details of US images. While enhanced images can be 

processed further to detect the tumors with an even higher accuracy, the proposed speckle 

reduction method is very useful for CAD systems using ultrasound medical images. 

2.5 Conclusions 

In this chapter, a novel speckle-suppression algorithm using a 2D homogram and 

directional average filter is developed. The local homogeneity defined by the texture 

information is used to describe speckle noise, and the pixels are divided into a 

homogenous set and a nonhomogenous set based on the homogeneity threshold value 

obtained using the maximum 2D entropy principle. The pixels in the nonhomogeneous 

set are handled by the directional average filters iteratively. 

All the parameters for describing speckle noise and terminating the iterative 

process are derived automatically based on the characteristics of the given US images. 

The experimental results demonstrate that the proposed approach can remove speckle 

noise and preserve the edges and details of the US images at the same time. The proposed 

algorithm has a better performance than that of the existing algorithms, it is likely this 

approach will find wide application in ultrasound imaging. 
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CHAPTER 3  

ENHANCEMENT OF BREAST ULTRASOUND IMAGES 

Breast cancer is a serious disease that can prove fatal if not caught early. Thus, 

early detection is essential. Breast ultrasound images have been proven to be a valuable 

adjunct to mammography in the detection and classification of breast lesions. Due to their 

fuzzy and noisy nature and the low contrast of ultrasound images, however, it is difficult 

to provide accurate and effective diagnose using ultrasound images. Image enhancement 

is used to improve the quality of the image and to correct deficiencies of the contrast. 

Breast ultrasound images have low contrast and some degree of fuzziness such as 

indistinct cyst borders, ill-defined mass shapes, and different tumor densities.  

3.1 Summary of Breast Ultrasound Image  

Enhancement Methods 

 

3.1.1 Filtering Methods 

Some nonlinear filters have been used to enhance the ultrasound images. For 

example, [98]  presents a morphological method, alternating sequential filter (ASF), that 

enhance ultrasound images.  It is difficult to enhance the image and suppress noise at the 

same time. One group of researchers [99] adopts a nonlinear enhancing filter based on 

sorting the elements in a moving window and extracting statistical characteristics from 

them. The filter compares the statistical values of the front and back points to those of the 

point centered in the window. It next estimates the output using the compared result. 

However, the enhancement is affected by the size of filters. How to determine the size 

and number of filters is not discussed in detailed. 

Many nonlinear or linear map functions are used to enhance the contrast of 



 

 

 

46 

ultrasound image in the space domain or other domains. The authors of [100] apply the 

gray level mapping technique (GLM) to further enhance ultrasound images of different 

contrast levels and brightness. GLM is a technique that maps the input gray level (low 

and high) to the stretched output gray level (bottom and top) observed in a look-up table. 

The mapping function is an exponential function, and its parameter is a constant that does 

not change with different images. A nonlinear algorithm [101] has been studied for 

contrast enhancement accomplished via nonlinear stretching followed by hard 

thresholding of wavelet coefficients within midrange spatial frequency levels. The 

selection of the threshold is subjective, and the enhancement depends a great deal on the 

selection of hard threshold. 

An algorithm [102-105] called sticks is used to enhance the contrast of ultrasound 

images. In it, line segments (called ―sticks‖) in different angular orientations are used as 

templates for selecting the orientation at each point that is most likely to represent a line 

in an image to improve edge information. Thus, sticks are more suitable for edge 

detection than some other methods. However, the algorithm only enhances edge 

information, and the features inside the lesions are not paid enough attention. 

The authors of [106] use Laplacian pyramid-based nonlinear diffusion and shock 

filter (LPNDSF) for ultrasound image enhancement. In this method, a coupled nonlinear 

diffusion and shock filter process is applied in a Laplacian pyramid domain of an image 

to enhance edges. 

The authors of [33] present an adaptive image enhancement method through 

selected dynamic filtering for ultrasound images. It enhances the tissue structure and also 

smoothes the speckle regions adaptively from predefined filters. The criterion of a 
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speckle region is defined from a similarity value obtained from histogram matching 

between the histogram in the processing window and a reference derived from a speckle 

area. Large similarity values mean the speckle pixels need smoothing from low pass 

filtering, and small values correspond to structure pixels that are enhanced by high pass 

filters. All these filters can be implemented as dynamic filtering whose index is the 

similarity value for adoptively smoothing speckle for contrast enhancement or enhancing 

structure for better edge/boundary detection.  

An adaptive pyramid filtering method is presented in [107] that increases an 

ultrasound image’s contrast. The image is first decomposed into multi-resolution 

representations using the Laplacian pyramid (LP). Each LP layer is then filtered with an 

adaptive filter to smooth noise and save features at the same time. The controlling 

parameter of the filter at each LP layer is calculated using local statistics, and the 

transformation function of the equivalent filters related to the LP layer. The output image 

is then reconstructed from the filtered LP layers.  

The approach proposed in [108] bases ultrasound image enhancement on a 

perceptual saliency measure. The boundaries of tissues in US images are enhanced by 

computing the saliency of directional vectors in the image space. The measure is 

generally determined by curvature changes, intensity gradient, and the interaction of 

neighboring vectors.  

The authors of [109] modified the existing framework of an adaptive filtering 

mechanism to enhance and preserve important, typically anisotropic, image structures. 

This filtering technique facilitates user interaction and direct control over high frequency 

contents of the signal. Local structure analysis is performed based on tensor estimation 
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with an optimized set of spherical harmonic filters.  

The research presented in [110] investigates the use of morphology-based 

nonlinear filters, and performs deterministic and statistical analysis of the linear 

combinations of the filters for the image enhancement of B-mode ultrasound images. 

Initially, five different images were morphologically filtered using ten different 

structuring elements, and the filtered images were assessed quantitatively. A subjective 

analysis by radiologists indicates that a morphological filter using line shaped structuring 

element with length 2 performs better than other structuring elements.  

A filtering technique has been applied to the wavelet domain for enhancement. 

The authors of [111] propose a nonhomomorphic filtering method, namely, GenLik, in 

the wavelet domain. The GenLik method employs a preliminary detection of the wavelet 

coefficients to empirically estimate the statistical distributions of signal and noise. 

Another team of researchers [112] propose an ultrasound image enhancement method 

based on the combination of the GenLik method and the local Wiener filtering technique 

in the wavelet packet transform domain. First, the method decomposes an ultrasound 

image into wavelet packet transform (WPT) subbands. For each detail subband, the 

method filters WPT coefficients using a local Wiener filter, and uses the joint to detect 

and an estimation function to compute the estimated value of each coefficient. Finally, the 

enhanced image is reconstructed using the processed detail subbands and the coarse 

subbands. 

3.1.2 Histogram Equalization Method 

The histogram equalization (HE) method has been improved upon for ultrasound 

image contrast enhancement. The authors of [113] employ a multi-peak generalized 
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histogram equalization (GHE) method [114] to enhance a breast ultrasound image. 

Presented in [50] is an entropy-based local histogram equalization (LHE) algorithm to 

ultrasound image enhancement achieved by using the local entropy value of a subblock to 

decide whether LHE is applied on the center pixel of this subblock.  

3.1.3 Fuzzy Set Methods 

Fuzzy set theory [115, 116] has been employed to enhance ultrasound images. In 

fuzzy set methods, the image is first transformed into the fuzzy domain using the 

membership function. Next, the membership function is enhanced by an iterative 4-

segment function. However, the rules of the iterative 4-segment function and the number 

of iterations are fixed and determined subjectively. Also, the method just used global 

features, and cannot reflect the local contrast change. 

There are some other methods for breast ultrasound image enhancement. A 

statistical model using tissue properties and intensity nonhomogeneities in ultrasound has 

been used for contrast enhancement and image segmentation. The maximum a posteriori 

(MAP) principle has been used to correct tissue intensity and to conduct contrast 

enhancement of breast ultrasound images [117]. The method modifies the distribution of 

the intensities, and does not pay much attention to the features of tumors and tissues. 

3.2 Proposed Method 

We present a novel enhancement algorithm based on fuzzy logic and homogeneity 

with the ability to enhance the fine details of an ultrasound image, while avoiding noise 

amplification and over enhancement. The maximum fuzzy entropy principle is used to 

map the original image. The characteristics of ultrasound image are then taken into 

account. Specifically, edge and textural information is extracted to evaluate the lesions’ 
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features and the scattering phenomenon of ultrasound images. The local information is 

used to define the enhancement criterion. It enhances the image using both local and 

global fuzzy information. To demonstrate the performance of the proposed approach, the 

algorithm was tested on a large number of breast ultrasound images. Experimental results, 

presented in Section 3.3, confirm that the proposed method effectively enhances the 

details of the breast lesions without over-enhancement and under-enhancement. 

Among the early indicators of breast cancers, masses and microcalcifications are 

the primary features and important visual indicators for early cancer detection [118, 119]. 

Unfortunately, in the early stages of breast cancer, the inside structure and border of 

masses of ultrasound images are very subtle and varied in appearance, making diagnosis 

very difficult. The difference between the suspicious areas and normal tissues can be very 

slight. Breast ultrasound image enhancement, especially for images of dense breasts, is 

very important for both the doctors and computer-aided diagnosis systems. Enhancement 

allows for more useful information to be extracted for diagnosis. 

The proposed method consists of five steps: gray level normalization, image 

fuzzification, edge information extraction, textural information extraction, and contrast 

enhancement. 

3.2.1  Gray-level Normalization 

The distribution of gray levels of breast ultrasound images may vary greatly; 

however, the ranges of the intensities are narrow. Normalization is a necessary step, and 

we normalize the ultrasound image by mapping the intensity levels into the range 

min max
[ , ]g g : 
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where 
mino

g  and 
maxo

g  are the minimum and maximum intensity levels of the original 

image, 
min

g  and 
max

g  are the minimum and maximum intensity levels of the normalized 

image,  and ( , )
o

g i j  and ( , )g i j  are the gray levels at the coordinates ( , )i j  before and 

after normalization, respectively. 

3.2.2  Image Fuzzification 

In order to apply fuzzy logic to deal with the fuzziness of A breast ultrasound 

image, a suitable membership function is selected to map all the elements of a set into 

real numbers in the range [0, 1]. The values of the function represent the brightness 

degree of the pixel intensities. The most commonly used membership function for a gray 

level image is the standard S function [120] as shown in Figure 3.1: 
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 (3.2) 

 

In the S function equation, the selection of the middle point y  can be determined 

as an object-background classification problem [121] using the entropy principle [122, 

123]. Let 
i

p  be the probability distribution of the grey levels i , 1, 2, ,i N . The 

distributions of intensity levels are as follows. 
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Figure.3.1. S function. 

The intensity levels less than or equal to t  are: 

 1 2
, , ......

t

t t t

pp p

P P P
，  (3.3) 

and the intensity levels greater than t  are: 

 1 2
, , ......

1 1 1

t t N

t t t

p p p
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 

  
，  (3.4) 
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

   (3.5) 

where t  is the threshold, and N  is the maximum intensity of the image. 

The entropies of the distributions less than or equal to, and greater than the 

threshold t  can be defined as ( )
l

H t  and ( )
g

H t , respectively: 
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The maximum information of the entire distribution can be obtained by: 

  
1

*
( ) ( )m ax

N

g
t

H
l

t t H tArg


   (3.8) 

where *
t  is the optimal threshold. The value *

t  is used as the middle point of the S 

function. The ultrasound image is transformed from the intensity domain into fuzzy 

domain using the S function: 

 *
( , ) ( ( , ); , , )ti j S g i j x z   (3.9) 

  

0 1

0 1

( ( , ))

0

m ax

( ) ( , )

j W

i H

g i j

g

m

h m g i j m

  

  



   (3.10) 

 
1 0

( )
0

t
t

o therw ise



 


 (3.11) 

where ( , )g i j  is the intensity at the coordinates ( , )i j , ( )
g

h m  is the gray level histogram, 

m is the gray level, and H and W  are the height and width of the image. The values of x  

and z  are the gray levels corresponding to the first peak and last peak of ( )
g

h m , 

respectively. If ( ( ) ( 1)) ( ( ) ( 1))
g g g g

h n h n h n h n     , then ( )
g

h n  is a peak. 

3.2.3  Edge Information Extraction 

Among the early indicators of breast cancer, the mass’s shape and margin, and the 

membrane’s smoothness are primary features. In order to obtain the edge feature, an edge 

operator is applied to the fuzzified image: 
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where ( , )i j


  is the edge value by using the Sobel operator [124], and 

max
max( ( , ))i j

 
  , 

min
min( ( , ))i j

 
   ( 0 1, 0 1i H j W      ). 

3.2.4  Texture Information Extraction 

There are many methods used for describing texture features. One method [15]  

computed 28 descriptors at five different neighborhood sizes to make a total of 140 

descriptors. Another algorithm [125] studied the classification of ultrasonic liver images 

by using texture features: the spatial gray-level difference statistics, the Fourier power 

spectrum, the gray-level difference statistics, and the Laws’ texture energy measures 

[126]. 

Scattering phenomenon is the main characteristic of ultrasound images and occurs 

when tissues are rough or smaller than the scale of the wavelength. Many small lesion 

and tissue features can be gained from scattering on ultrasound images. In the proposed 

method, the Laws’ texture energy measures (TEM) are used to determine the textural 

properties of ROIs in the fuzzy domain. Four masks, 5 5
T

L E , 5 5
T

L S ,  5 5
T

E L , and  

5 5
T

S L , are used to depict the edge and spot features of scattering. 

The texture value of the pixel at coordinate ( , )i j , ( , )f i j


 is used to describe the 

textural information as: 
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where 
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L E

i jf
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, 
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i jf
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, 
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( , )T
E L

i jf
 

 and 
5 5

( , )T
S L

i jf
 

 are the convoluted results of the 

( , )i j  with the four masks, and 
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5 5 max 5 5
max ( , )(( ))T T

L S L S
i jf abs f

  
 , 

5 5 max 5 5
max( ( ( , )))T T

E L E L
abs i jf f

  
  and 

5 5 max 5 5
max( ( ( , )))T T

S L S L
abs i jf f

  
 , respectively (0 1, 0 1)i Height j W idth      . 

3.2.5  Contrast Enhancement 

In the proposed method, the image is enhanced by modifying the contrast ratio in 

the fuzzy domain. Several propsed methods use analytic functions [127, 128] or charts 

[129] to increase the contrast ratio.  

The contrast ratio is defined in the fuzzy domain. Many definitions of contrast 

have been studied [130]. Usually, the contrast C is defined as [129]: 
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( )

f b
C

f b





 (3.14) 

where f  is the maximum intensity and b  is the minimum intensity of the image. 

The contrast ratio is defined in fuzzy domain as follows:  
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 (3.16) 

where ( , )
w

i j  is the local mean of the window whose size is w w  and centered at 

location ( , )i j . 

The new contrast C   is obtained by using a nonlinear function of C  or an 

empirically determined relationship between C   and C . Previously, analytic functions 

(square root, exponential, and logarithm) were used [127, 128]. However, it was found 

that an empirically formed chart or plot defining the relationship between C   and C  

gives better results [129]. Additioanlly, the authors of [131] use a class of modified 
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sigmoid functions to enhance the ultrasound image. 

An exponential function ( , )k i j  transforms C

 into C


 , which boosts the 

perceptibility of regions with low contrast while not affecting high-contrast regions. 

( , )k i j  is determined according to the nature of the original image automatically. Consider: 

  
( , )

( , ) ( , )
k i j

C i j C i j
 
   (3.17) 

where ( , )k i j  is the local contrast amplification constant of pixel ( , )i j . The exponential 

function significantly affects the degree of the contrast enhancement. How to determine 

the value of ( , )k i j  will be discussed later. 

The modified membership value ( , )i j   of pixel (i, j)  can be obtained by: 
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Finally, a defuzzification process is adopted to obtain the enhancement result in 

the gray level domain. The enhanced intensity of pixel ( , )i j  is obtained by using the 

inverse function 1
( ( , ); , , )S i j x y z


 :  
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where 
min

g  and 
max

g  are the minimum gray level and maximum gray level after the 

enhancement. 

3.2.6 Determination of the Amplification Exponent 

The fuzzy entropy, ( , )En i j , is calculated and used to evaluate the uniformity 
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degree of the local region. The basic idea for determining the amplification exponent 

constant ( , )k i j  is this: If ( , )En i j  is low, the fuzzy membership of the region varies 

sharply, the degree of enhancement should be high, and the amplification exponent 

constant ( , )k i j  should be small. On the contrary, if ( , )En i j  is high, the fuzzy 

membership varies slowly, and ( , )k i j  should be large. 
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 ( , ) ( , ) ( , ) ( , )E i j i j f i j e i j
  

    (3.22) 

The determination of the minimal and maximal amplification constants, 
min

k  and 

max
k , should relate to the contrast of the original image. At first, the local contrast of the 

original image is computed. Next, some measurements of the contrast are calculated to 

evaluate the degree of the contrast of the original image.  

The local contrast of the original image is computed in the gray level domain as 

follows: 
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where ( , )C i j  is the local contrast at pixel of ( , )i j , and ( , )
s

g i j  is the local mean of  the 

gray levels in the window with size s s  centered at pixel ( , )i j . 

Then, the conditional mean value of the contrast RC  is calculated. 
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where H  and W  are the height and width of the image, ( )G R  is the region having 

contrast value smaller than R , M is the number of pixels in this region, and RC  is the 

mean value of the contrast whose values are smaller than R , (0,1)R  . The method to 

determine R  will be discussed later. 

If we define the difference between the intensities of the central area and the 

overall image as L  and the overall image intensity as L , the ratio between the two is 

called the Weber ratio W  [96]: 

 
L

W
L


  (3.26) 

If a region differs in intensity from its surroundings by less than 2% [96, 125], it 

is indistinguishable to the human eye. In order to increase the image contrast over the 

Weber ratio and accomplish the enhancement task, the contrast ratio, ( , )C i j


, which is 

less than 2%, should be transformed to ( , )C i j

  which is more than 2%. The aim of 

selecting 
max

k  and 
min

k  is to increase image contrast above the threshold. Therefore, we 

define R=0.02 as the Weber ratio [96, 125]. 

The maximal and minimal amplification exponent constants are determined as 

follows: 
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where RC  is the mean value of the contrasts whose values are smaller than R , and 
min

C  is 
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the minimal value of the contrasts. 

Finally, the local amplification exponent is obtained as: 

 m in m ax m in

m in

m ax m in
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where 
min

En  are 
max

En  the minimal and maximal local fuzzy entropy, respectively. 

 min
,

min ( , )
i j

En En i j ,  max
,

max ( , )
i j

En En i j . 

All steps of the algorithm are summarized in the flowchart in Figure 3.2. 

C om puting  S  function and 

fuzzifying  the im age

E xtract texture inform ation

C om puting contrast values  C µ(i,j)

C om puting am plification value  k(i,j) 

and m odifying contrast values C
’
µ(i,j)

D efuzzifying  the m em bership value  

g
’
(i,j)

E nhanced im age

E xtract edge inform ation

 

Figure 3.2. The flowchart of the enhancement algorithm. 
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3.3 Experimental Results and Discussion 

3.3.1 Experiments on Breast Ultrasound Images 

To test the proposed method, we applied it to five breast ultrasound images. The 

parameters of the algorithm for each image are listed in Table 3.1. Figures 3.3 through 

3.7 show experimental results  of the proposed method. Figures 3.3(a), 3.4(a), 3.5(a), 

3.6(a), and 3.7(a) are the original images, and Figures 3.3(b) through 3.7(b) are the results 

obtained by using the proposed method, respectively. A mass’s features, such as shape, 

edge, echo inside, are important criteria for distinguishing between malignancy and 

benignancy.  After being enhanced by the proposed method, the lesions’ features are 

significantly improved. 

Figure 3.3(a) has a compact mass at the center of the image, and the mass echo 

and intensity are very low. The mass is hardly distinguishable from the background.  In 

Figure 3.3(b), the mass becomes clearer and easier to detect, and the shape and edge can 

be better extracted. 

Table 3.1. Parameters for the Images. 

Image w  size s  size 
min

k  
max

k  

Figure 3.3 5x5 3x3 0.4299 0.8473 

Figure 3.4 5x5 3x3 0.4023 0.8528 

Figure 3.5 5x5 3x3 0.4700 0.8385 

Figure 3.6 5x5 3x3 0.4472 0.8505 

Figure 3.7 5x5 3x3 0.4229 0.8634 
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(a)       (b) 

Figure 3.3. First example of breast ultrasound image enhancement.  

(a) Original image. (b) image enhanced by the proposed method. 

 

 

 

 

 

 

   

(a)                                                                 (b) 

Figure 3.4. Second example of breast ultrasound image enhancement. (a) 

Original image. (b) Image enhanced by the proposed method. 
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(a)                                  (b) 

Figure 3.5. The third example of breast ultrasound image enhancement. (a) 

The original image (b) The image enhanced by the proposed method. 

 

 

 

 

 

     

(a)       (b) 

Figure 3.6. Fourth example of breast ultrasound image enhancement.  

(a) Original image (b) Image enhanced by the proposed method. 
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(a)                                              (b) 

Figure 3.7. Fifth example of breast ultrasound image enhancement. (a) 

Original image (b) Image enhanced by the proposed method. 

 

 

 

In Figure 3.4(a), the ill-defined border of the mass is almost invisible and not 

connected, especially, at the lower left. After applying the proposed method, the border is 

much clearer, and the structure surrounding the mass is more distinct. 

Figure 3.5(a) has a loose cluster of microcalcifications at the center of the mass. 

In Figure 3.5(b), those tiny spots become brighter, the microcalcifications are more 

distinct. Meanwhile, the glandular tissue on the upper area is not over-enhanced. 

Figure 3.6(a) has a different type of mass with a well-circumscribed border. The 

mass has a low echo inside, the intensity inside the mass is very low, and details cannot 

be seen clearly. After enhancement, not only is the boundary of the mass considerably 

improved, but also the structure inside the mass is sharper. 

The mass in Figure 3.7(a)has a blurry edge, and the inside structures are barely 

distinguishable. The difference between the bottom of the mass and other tissues is very 

small. In the enhanced image, the mass can be distinguished from its surroundings, and 

the microcalcifications inside the mass are much clearer. 
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3.3.2 Comparison with Other Methods 

In this section, the proposed method is compared with two enhancement methods: 

a modified histogram equalization method [114] and a fuzzy logic-based method [132]. 

In the diagnosis of breast cancer, a mass is regarded as an important criterion. 

Features of the mass playing a significant role in breast cancer diagnosis include shape, 

boundary, branch, internal structures, and the microcalcifications. The enhancement 

results of these regions determine the performance of the enhancement algorithm. 

Figures 3.8 through 3.11 show comparisons of the proposed method with the 

modified histogram equalization method [114] and the fuzzy logic based method [132] on 

breast disease ultrasound image enhancement. Figures 3.8 and 3.9 are malignant images, 

and Figure 3.10 and 3.11 are benign cases. Figures 3.8(a), 3.9(a), 3.10(a), and 3.11(a) 

show the original image. Figures 3.8(b) through 3.11(b) show the enhancement results by 

the proposed approach. Figures 3.8(c) through 3.11(c) are the image enhanced by the 

modified histogram equalization method. Figures 3.8(d) through 3.11(d) provide the 

enhancement results by the fuzzy logic-based method.  The white rectangles on the 

images highlight the important regions to be compared.  

Figure 3.8(a) shows a mass with several branches.  The shape and boundary of the 

branches are very useful for diagnosis. In Figure 3.8(b), the mass is clear and is easy to 

detected. Its boundary is distinct, and the shape easily described. In Figure 3.8(c), 

although the mass’s edge is enhanced sharply, the inside structure of thatmass and gland 

region are over-enhanced, which is not suitable for diagnosis. The result in Figure 3.8(d) 

is under-enhanced, and the contrast is low. 

In Figure 3.9, the central mass has several microcalcifications, which is another 
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important feature in judging ROIs. In Figure 3.9(a), these microcalcifications are very 

fuzzy. It is difficult to measure their position, size, shape and number. In Figure 3.10(b), 

the micorcalcifications are enhanced correctly, and the contrast is improved. It is easy to 

measure their position, size, shape, and number. In addition, over-enhancement does not 

occur. In Figure 3.10(c), the microcalcifications and structure inside the mass are over-

enhanced. In Figure 3.10(d), these microcalcifications are not clear, not easy to detect. 

Figures 3.10 and 3.11 show a distinct mass. The boundary of the mass is very 

smooth, which is diagnosed as a benign case.  The up boundary of the mass in Figure 

3.5(a) is very fuzzy. After enhancement, as shown in Figure 3.10(b), the up boundary 

becomes distinct, and the inside structure is enhanced correctly. Figures 3.10(c) and (d) 

are over-enhanced and under-enhanced, respectively. In Figure 3.11(a), the mass’ 

boundary is very clear and smooth. As such, the structure inside the mass is very useful 

for doctors. Figures 3.11(b) and (d) show the mass enhanced correctly, and make the 

inside structure clearer. However, there are some over-enhanced regions in Figure 3.11(c). 

A comparison of the experimental results shows that the proposed method 

achieves better performance than the modified histogram equalization method [114] and 

the fuzzy logic-based method [132]. The lesions’ features in the breast ultrasound images 

are better enhanced, and all details are well preserved. In addition, over-enhancement is 

avoided. This better performance should prove useful for radiologist in diagnosing breast 

cancer.  
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(a)                                                                 (b) 

  

(c)                                                                       (d) 

Figure 3.8. First example of breast ultrasound image enhancement 

comparison. (a) Original image. (b) Enhanced image using the proposed 

method. (c) Enhanced image using the modified histogram equalization 

method. (d) Enhanced image using the fuzzy logic based method. 
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(a)                                                                       (b) 

  

(c)                                                                       (d) 

Figure 3.9. Second example of breast ultrasound image enhancement 

comparison. (a) Original image. (b) Enhanced image using the proposed 

method. (c) Enhanced image using the modified histogram equalization 

method. (d) Enhanced image using the fuzzy logic based method. 
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(a)                                                                       (b) 

   

(c)                                                                       (d) 

Figure 3.10. Third example of breast ultrasound image enhancement 

comparison. (a) Original image. (b) Enhanced image using the proposed 

method. (c) Enhanced image using the modified histogram equalization 

method. (d) Enhanced image using the fuzzy logic based method. 



 

 

 

69 

    

(a)                                                                       (b) 

    

(c)                                                                       (d) 

Figure 3.11. Fourth example of breast ultrasound image enhancement 

comparison. (a) Original image. (b) Enhanced image using the proposed 

method. (c) Enhanced image using the modified histogram equalization 

method. (d) Enhanced image using the fuzzy logic based method. 
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3.3.3 Experiments on Clinical Breast Cancer Diagnoses 

The proposed approach significantly enhances the contours and the fine details of 

ultrasound images. These enhanced images can be processed further to detect the tumors 

with high accuracy. Such enhancement is very useful for diagnosis.  

In order to evaluate the performance on the diagnosis of proposed method, a 

comparative study of the diagnostic results of the ultrasologists was done with/without 

using the proposed enhancement algorithm. In all, 350 ultrasound images from 115 cases 

were analyzed including 59 benign and 56 malignant lesions. The original breast images 

were enhanced. The original and enhanced images were assessed and evaluated by 

ultrasologists using a double blind method before and after enhancement. The diagnostic 

sensitivity and specificity were calculated by the areas (Az) under the receiver operating 

characteristic (ROC) curves. The two diagnostic results of before and after enhancement 

were compared by the Chi-square test in a 2×2 table. The results demonstrate that the 

discrimination rate of breast masses is highly improved after employing the novel 

enhancement algorithm. Sensitivity raised from 74.3%to 89.3% with the false-positive 

(FP) rate 14.3%, and the area (Az) under the ROC curve of diagnosis increased from 0.84 

to 0.93.  The proposed enhancement algorithm can, thus, increase the classification 

accuracy and decrease the rate of missing and misdiagnosis, making it useful for breast 

cancer detection. 

The 350 original images were processed using the newly developed enhancement 

algorithm. The original images and enhanced images were randomly given to 

experienced ultrasologists who did not know the initial results. According to these 

ultrasound characteristics, the lesion was located, the margin feature was analyzed, and 
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the ultrasound characteristics of the lesion were extracted. A benign or malignant 

classification was determined. The diagnostic results were divided into five categories: (1) 

definitely or almost definitely benign, (2) probably benign, (3) possibly benign/ 

malignant, (4) probably malignant, (5) definitely or almost definitely malignant.   

The diagnostic results of ultrasologists on both the original and enhanced images 

were analyzed and assessed by ROC curves. The results before and after enhancement 

were tested by Chi-square test in a 2×2 table. The accuracy of the diagnosis was 

evaluated in terms of sensitivity (Se) and specificity (Sp). The accuracy of the two 

methods was determined by the area ―Az‖ under the ROC curve (0≤Az≤1). The closer to 

1 the Az is, the better the diagnosis is. If Az =0.5, it acts as no effect, and if Az<0.5, it 

does not accord with reality. 

The diagnostic results obtained by the ultrasologists using the original images and 

enhanced images and the pathological results are listed in Tables 3.2 and 3.3, respectively. 

 

Table 3.2.  Ultrasound Diagnostic and Pathological Results Based on the 

Original Images. 

 

Table 3.3. Ultrasound Diagnostic and Pathological Results Based on the 

Enhanced Images. 

Ultrasound 

Pathology 
Benign 

Probably 

Benign 

Possibly 

Benign/Malignant 

Probably 

Malignant 
Malignant Total 

Benign 28 8 14 5 4 59 

Malignant 4 4 6 12 30 56 

Ultrasound 

Pathology 
Benign 

Probably 

Benign 

Possibly 

Benign/Malignant 

Probably 

Malignant 
Malignant Total 

Benign 38 6 13 3 2 59 

Malignant 2 2 3 8 41 56 
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The two tables show that breast lesions definitely diagnosed increased from 58 

cases in the original images (30 malignant cases and 28 benign cases shown Table 3.2 ) to 

79 cases in the enhanced images (41 malignant  cases and 38 benign cases shown in 

Table 3.3), asignificant improvement. 

At different cutoff values, the sensitivity and specificity of ultrasologists’ 

diagnosis on the original and enhanced breast images indicate the following: when the 

false-positive rate is 14.3%, the sensitivity of the enhanced images improves from 74.3% 

to 89.3%, and when the false-positive rate is 35.7%, the sensitivity of the enhanced 

images also improves significantly from 83.9% to 96.4%. 

The ROC curves of ultrasologists’ diagnosis on the original and enhanced images 

are shown in Figure 3.12. 

 

 

                                                                                                                

Figure 3.12.  ROC curves of the original and enhanced breast ultrasound images. 
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From Figure 3.12, we see that the ROC curve of the ultrasologists’ diagnosis on 

the enhanced images is more convex than that of the original images. This implies that 

the curve has a higher diagnostic value. Using the ROC curve, the ranges of the areas are 

calculated: the original images Az1=0.84, and its 95% credible interval is [0.734, 0.950]. 

While the enhanced images Az2=0.93, its 95% credible interval is [0.862, 1]. From this, 

we can conclude that the enhanced images have an improved accuracy rate of diagnosis.  

3.4 Conclusions 

A breast ultrasound image enhancement algorithm based on fuzzy logic and fuzzy 

homogeneity was developed. The proposed method is very efficient and effective in 

contrast enhancement: (1) The lesions’ features in breast ultrasound images are better 

enhanced, and all details are well preserved. (2) Over-enhancement is avoided. This good 

performance is due to the following factors: (1) The S function is used in image 

fuzzification, and the parameters are determined using the fuzzy entropy theory 

automatically. (2) The algorithm uses both local and global information. Therefore, the 

proposed approach is useful for breast ultrasound image analysis and CAD systems. 



 

 

 

74 

 

CHAPTER 4 

BREAST ULTRASOUND IMAGE SEGMENTATION 

Computer aided diagnosis (CAD) system will help radiologists in reading and 

interpreting sonography. Segmentation is an important step in image processing, which 

divides an image into non-overlapping regions. It is essential and critical to detecting 

lesions and making correct diagnoses. 

4.1 Summary of Breast Ultrasound  

      Image Segmentation 

4.1.1 Histogram Thresholding Method 

Many algorithms have been proposed for segmenting BUS images. The authors of 

[133, 134] discuss a segmentation algorithm for masses on sonography using the 

following steps: (1) preprocessing using cropping and median filtering, (2) multiplying 

the preprocessed image with a Gaussian constrain function, (3) determining the potential 

lesion margins through gray-value thresholding, and, (4) maximizing a utility function for 

the potential lesion margins. However, the center, the width, and height of the lesions are 

selected manually or semi-manually. A radial gradient index (RGI) filtering technique 

[135] was used to segment and detect lesions in BUS images. After ROIs are located by 

the RGI filtering technique and their centers are documented as points of interest, a 

region-growing algorithm is used to determine candidate lesion margins. The lesion 

candidates are segmented by maximizing an average radial gradient (ARD) index for 

region growing. However, the algorithm does not perform well if the lesion is not 

compact and round-like. A segmentation algorithm for breast lesions based on multi-
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resolution texture adaptive clustering has been proposed [136]. This algorithm improves 

on the one proposed in [137] by including the energy function to measure the textural 

properties of various kinds of tissues. The algorithm involves 2D adaptive K-means 

clustering. The segmentation problem is formulated as a maximum a posteriori (MAP) 

estimation problem. The MAP estimation utilized Besag's iterated conditional mode for 

minimizing an energy function, constraining the region close to the data, imposing spatial 

continuity, and considering the textural information of various regions. However, the 

input images for this algorithm are only ROIs.  

In summary, histogram thresholding methods tend to be less effective for images 

with a nonbimodel histogram. In addition, some of them are sensitive to noise and 

contrast. The speckles, weak edges and tissue-related textures in BUS images prevent 

determination of the tumor boundaries satisfactorily. 

4.1.2  Active Contour Model 

Some segmentation algorithms have been proposed based on the active contour 

model. The 3D active contour model is applied to a 3D ultrasonic data file for segmenting 

a breast tumor [138, 139]. A 3D stick is used to handle ultrasonic images with speckle 

noise and to highlight the edges. Then, a 3D morphologic process helps in determining 

the contour of the tumor and the initial assignment of the active contour model. Finally, 

the 3D active contour model is used to locate the real contour of the tumor. The input 

images for the algorithm are only ROIs selected by radiologists. A segmentation 

algorithm was proposed [140, 141]. It has four steps. First, the ROIs are preprocessed 

with a 4×4 median filter to reduce the speckle noise and to enhance the features. Second, 

a 3×3 unsharp filter is constructed using the negative of a 2D Laplacian filter to 
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emphasize the elements with meaningful signal levels and to enhance the contrast 

between nodule and background. Third, the ROIs are converted to a binary image by 

thresholding. The threshold is determined by the histograms of ROIs. If a valley of the 

histogram between 33% and 66% of the pixel population can be found, this intensity 

value is selected as the threshold. If no such a valley in that range exists, the intensity of 

the 50% pixel population is selected as the threshold.  The selected nodule’s boundary 

pixels are obtained using morphologic operations. The algorithm only can handle the 

ROIs, and threshold selection relies on the shape of the histogram and the intensity 

distributions of ROIs.  

The 3D snake technique has been used to obtain a tumor contour for pre-operative 

and post-operative malignant breast excision [138]. By using anisotropic diffusion filter, 

the noise and speckle are reduced. The stick detection is next adopted for enhancing the 

edge. Finally, the gradient vector flow (GVF) snake is used to locate the tumor contour. 

However, the automatic threshold method is too simple and primitive and does not 

perform well for unimodal histograms [142]. 

Methods based on a snake deformation model can only handle ROIs, not the 

entire image. The accuracy of the snake deformation process depends on the initial 

estimation of the contours [143, 144]. Automatically generating a suitable initial contour 

is very difficult, and the snake-deformation process is very time consuming. 

4.1.3  Neural Networks 

A study [145] integrated neural network (NN) classification and morphological 

watershed segmentation to extract the contours of the breast tumors. In the study, textural 

analysis is employed to find the inputs for the NN to classify ultrasonic images. 
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Watershed transformation automatically determines the contour of the tumor. Selecting 

the training set is problematic, and training an NN is time-consuming and depends on the 

image database. One algorithm [146] combined expectation maximization (EM) with 

hyper-parameter estimation and MPM (maximization of posterior marginal), and 

extended the EM/MPM framework to 3D by including pixels from neighboring frames in 

the Markov random field (MRF) clique. However, there are many noisy spots in the 

segmentation results, and the algorithm is time-consuming. A technique to automatically 

find lesion margins that combined intensity and texture with empirical domain-specific 

knowledge with gradient and a deformable shape-based model has been presented [147]. 

Images are first filtered to remove speckle noise, and contrasts are enhanced. The 

empirical rules for detecting ultrasonic breast lesions by radiologists are employed to 

automatically determine a seed point in the image. This is followed by region growing to 

obtain an initial segmentation of the lesion, and pixels are classified based on intensity 

and texture. Boundary points are found on the directional gradient of the image, which 

are utilized as the initial estimate of a deformable model. 

BUS images suffer from speckle noise due to interference from back-scattered 

signal, and such noise significantly degrades image quality and hinders the discrimination 

of fine details.  BUS images have fuzziness, such as indistinct cyst borders, ill-defined 

mass shapes, blurry tumor boundaries, etc., making segmenting BUS images 

automatically and correctly difficult. Furthermore, some of above methods only use ROIs 

and cannot be used on CAD systems. In addition, many of these methods do not take into 

consideration of the characteristics of BUS images [148].  
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Table 4.1. Breast Ultrasound Image Segmentation Methods [34]. 

 

Method Description Advantage Disadvantage 

Histogram 

thresholding 

method  

The threshold value is 

selected to segment the 

image. 

Simple and fast. Less effective for images 

with nonbimodel 

histogram. 

Active 

contour 

model 

Snake-deformation 

mode is utilized to 

extract the lesion on 

ultrasound images. 

It can extract lesions 

with different shapes 

and keep the 

boundary correct. 

Slow iteration speed. 

Neural 

network 

(NN) 

Segmentation is 

regarded as a 

classification problem, 

which is solved by NN. 

It extracts the 

contours of tumors 

automatically. 

Select the training set is 

problematic, and training a 

NN is time-consuming and 

dependent on the image 

database. 

4.2 Proposed Method 

This chapter proposes a novel automatic segmentation algorithm, which not only 

employs the entire image for segmentation, but also utilizes BUS image characteristics. 

Our method is employed to extract the mammary gland area. Furthermore, a new 

eliminating particle swarm optimization (EPSO) clustering algorithm is proposed based 

on the idea of ―survival of the superior and weeding out the inferior‖ to segment the BUS 

images quickly and accurately. 

The particle swarm optimization (PSO) algorithm is an evolutionary computation 

technique utilizing random searching inspired by the mechanisms of natural selection and 

genetics to emulate the evolutionary behaviors of biological systems. PSO has a fitness 

evaluation function to compute each position’s fitness value. The position with the 

highest fitness value in the entire run is called the global best solution 
Best

P . Each particle 

tracks its highest fitness value. The location of this value is called the personal best 

solution 
i

P . The algorithm involves casting a population of particles over the search space 
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and remembering the best solution encountered. On each iteration, every particle adjusts 

its velocity vector based on its momentum, and the effect of both its best solution and the 

global best solution of its neighbors. Studies show that the PSO has more chances to ―fly‖ 

into better solution areas quickly; hence, it can discover a reasonable solution much faster 

than other evolutionary algorithms. 

Our modified PSO, called eliminating PSO (EPSO), is based on the idea of 

―survival of the superior and weeding out the inferior.‖ N particles whose velocities and 

positions are updated accordingly are initialized, and the positions’ fitness values are 

calculated and sorted in a list in descending order. Then, L particles whose fitness values 

are in the last L positions of the list are eliminated. This reduces the computational time, 

while the accuracy of the solution is not affected. The process iterates until the maximum 

iteration number is reached or the minimum error condition is satisfied.  

EPSO clustering is an algorithm based on k-means clustering and the EPSO 

algorithm. The centers of the clusters are considered as the particle’s positions, and the 

EPSO algorithm is employed to search the optimum solution by eliminating the 

―weakest‖ particles to speed up the computation. K-means clustering is utilized to update 

the positions of particles. 

When the EPSO clustering algorithm is applied to ultrasound image segmentation, 

the intensities of pixels are the input to the EPSO clustering algorithm, and the pixels are 

grouped according to the optimum centers of EPSO clustering. 

BUS images have some fuzziness including vague tumor boundaries, high amount 

of speckles, low contrast between suspicious area and breast tissues, etc. Therefore, it is 

necessary to suppress speckle noise before segmentation.  
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4.2.1 Speckle Reduction 

Speckle noise is inherent in US imaging, and tends to reduce the resolution and 

contrast, thereby, diminishing diagnostic accuracy. In order to remove speckle noise, we 

implement an algorithm for speckle reduction based on 2D homogeneity histogram 

(homogram) [149] and directional average filters discussed in chapter 2. After speckles in 

the BUS image are removed, the regions become more homogeneous and the boundaries 

of the regions much clearer, which is better for segmentation. 

In this section, the structure of the BUS images is considered. Most breast cancers 

take in the mammary gland region. Therefore, it is significant to find the mammary gland 

region at first. 

4.2.2 Mammary Gland Region Extraction 

There are four layers of a BUS image [150]: skin, subcutaneous tissue, mammary 

gland and muscle. The boundaries between these layers are quite blurry, as shown in 

Figure 4.1.  

This section proposes a method based on the step-down threshold technique, 

which selects a threshold in each step, to extract the mammary gland area from the entire 

image. The mammary gland region is located between the subcutaneous tissues and 

muscle layers, which are characterized as a line-like area with high gray levels. The 

regions with high gray levels are searched to locate the layers of subcutaneous tissues and 

the chest muscle. After the layers of subcutaneous tissue and muscle are determined, the 

mammary gland region’s top and bottom margins are detected, and the mammary gland 

region is extracted between the two margins. 
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Figure 4.1. Breast structure in an ultrasound image. 

4.2.2.1 Thresholding the Image  

A threshold value ( )Th m is used to transform the BUS image into a binary 

image: 

 
0 ( , ) ( )

( , )
255

m
g i j Th m

bw i j
otherw ise


 


 (4.1) 

where ( , )g i j  is the gray level of ( , )P i j  after speckle reduction, ( )Th m  is the m th  step-

down threshold value, and ( , )
m

bw i j  is the binary image after the m th  thresholding 

processing.  How to determine ( )Th m  will be discussed later. 

Next, we search the white region on the binary image. After the white regions 

Re ( )W n  are found, the regions connected with the top and bottom margins are eliminated. 
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4.2.2.2 Detecting SubcutaneousTissues and  

Chest Muscle Regions 

 

 Because the subcutaneous tissues margin and muscle lines have high gray levels, 

the subcutaneous tissues margin and muscle line region can be located among the white 

regions obtained. The value of Ra , a ratio between the width and height, is used to 

eliminate the false subcutaneous tissues and muscle region: 

 ( ) ( ( ))Ra n max RaW H n  (4.2) 

 
( )

( )
( )

W n
RaW H n

H n
  (4.3) 

where ( )RaW H n  is the ratio between the width and height of the nth  candidate white 

region Re ( )W n . 

The white region with a large enough width (more than 50% of the width of the 

entire image in our experiments) is regarded as the true subcutaneous tissue margin and 

muscle line. If the true subcutaneous tissues margin and muscle line are not found, the 

threshold value is updated, and the procedure is repeated. Otherwise, the iteration 

processing is terminated, and the muscle line is located to extract the mammary gland 

region in the next step. The threshold value of each step is updated: 

 1

1

( ) 0

( 1)
0.8 ( ( , )) 0

j W

i H

Th m Th m

Th m
m ax g i j m

 

 

  


  
 



 (4.4) 

where ( )Th m  and ( 1)Th m   are the m th  and ( 1)m th  threshold values, respectively. Th  

is the decrement. Here, 
1

1

0.1 ( ( , ))

j W

i H

Th max g i j

 

 

   . 
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4.2.2.3 Extracting the Mammary Gland Region 

 The subcutaneous tissue margin and chest muscle line detected above are the top 

and bottom margins of the mammary gland region. The region is extracted successfully 

from the subcutaneous tissue and muscle layer. A flowchart of mammary gland region 

extraction method is shown in Figure 4.2. 

4.2.3 Mammary Gland Image Enhancement 

Breast ultrasound images have low contrast and some degree of fuzziness such as 

indistinct cyst borders, ill-defined mass shapes, and different tumor densities. Image 

enhancement is used to improve the quality of the image and to correct deficiencies of the 

contrast. We implement an algorithm for mammary gland image enhancement based on 

fuzzy logic, which is described in Chapter 3. After the mammary gland images are 

enhanced, the contrast is improved and the boundaries of the regions much distinct, 

which is better for segmentation. 

4.2.4 Mammary Gland Image Segmentation 

After preprocessing, the mammary gland region is extracted, and the lesions 

become more distinct. This chapter proposes a method combined with eliminating 

particle swarm optimization (EPSO) algorithm and k-means clustering to segment the 

mammary gland regions. In the proposed segmentation method, a k-means clustering 

result is employed to optimize the position of each particle in the swarm. 
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Figure 4.2. Flowchart of mammary gland region extraction algorithm. 
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4.2.4.1 Clustering Analysis 

 Clustering analysis can classify similar points into the same group [151, 152]. Let 

{ , 1, 2, , }
i

X X i n   be a data set, and 
i

x  be a point in the d-dimensional space. 

The problem of clustering is to find a partition 
1 2

{ , , }
m

C C C C , which satisfies: 

 
1

i=1,2, ,m

i,j=1,2, ,m ;i j

m

i
i

i

i j

X C

C for

C C for



 

 

   

 (4.5) 

The K-means algorithm is a widely used clustering analysis algorithm [153], 

whose objective function is defined as: 

 
1 1

jnm

C i j

j i

J X Z

 

    (4.6) 

where 
j

Z  is the center of the j
th

 cluster, m  is the number of clusters and 
j

n  is the number 

of pixels in the j
th

 cluster: 

 
1

i j

j i

X Cj

Z X
n 

   (4.7) 

where 
j

n  is the number of the elements in cluster 
j

C . 

4.2.4.2 Eliminating Particle Swarm Optimization Algorithm 

  The particle swarm optimization (PSO) algorithm is an evolutionary computation 

technique utilizing a random search inspired by the mechanisms of natural selection and 

genetics to emulate the evolutionary behaviors of biological systems. As introduced in 

[154], PSO simulates simplified swarm social models such as birds flocking or fish 

schooling. 

PSO has a fitness evaluation function to compute each position’s fitness value. 
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The position with the highest fitness value in the entire run is called the global best 

solution 
Best

P . Each particle tracks its highest fitness value. The location of this value is 

called the personal best solution 
i

P . The algorithm involves casting a population of 

particles over the search space and remembering the best solution encountered. At each 

iteration, every particle adjusts its velocity vector based on its momentum and the effect 

of both its best solution and the global best solution on its neighbors. It then selects a new 

point to examine. Studies have shown that PSO has more chances to ―fly‖ into better 

solution areas quickly; hence, it can discover a reasonable solution much faster than other 

evolutionary algorithms. The PSO formulation is described in [154, 155]. 

Let 
i

P  represent the i
th

 particle, whose position and velocity in a d-dimensional 

space are defined as 
id

X  and 
id

V , respectively. The position and velocity are updated 

according to the following formulas: 

 
1 2

( ) ( 1) ()( ( 1) ( 1)) ()( ( 1) ( 1))
id id id i ig i

V t V t c rand P t X t c rand P t X t           (4.8) 

 ( ) ( 1) ( 1)
id id id

X t X t V t     (4.9) 

where ( )
id

X t  is the position of the i
th

 particle in a d-dimensional space at time step t, 
i

V  is 

the velocity of ( )
i

P t . 
id

P  and 
ig

P  represent the d
th

 and g
th

 position of the i
th

 particle. 

Parameters 
1

c  and 
2

c  are learning factors, 
1 2

2c c  .   is an inertia weight, 0.1  , and 

()rand is a function to generate a random variable. 

A modified PSO, eliminating PSO (EPSO), is based on the idea of ―survival of the 

superior and weeding out the inferior.‖ N particles whose velocities and positions are 

updated accordingly are initialize, and the positions’ fitness values are calculated and 

sorted in a list in descending order. Next, L particles whose fitness values are in the last L 

positions of the list are eliminated. This reduces computational time, while the accuracy 
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of the solution is not affected. The process is iterated until the maximum iteration number 

is reached or the minimum error condition is satisfied.  

EPSO clustering is an algorithm based on k-means clustering and the EPSO 

algorithm. The centers of the clusters are considered as the particles positions, EPSO is 

employed to search the optimum solution by eliminating the ―weakest‖ particles to speed 

up computation. K-means clustering is utilized to update the positions of particles. 

The procedure of clustering analysis based on EPSO and k-means clustering is 

described below: 

(1) Select M  particles (primary population number), and put them into the primary 

swarm 
1 1

(1) { , , }
M

S P P P , and initialize the positions 
id

X  of swarm S  using k-means 

clustering results; 

(2) Randomly initialize the velocities 
id

V ; 

(3) Evaluate the fitness of each particle ( ( ))
id

Fit X t ; 

(4) Compare the personal best of each particle in the new swarm ( 1)S t   with its current 

fitness value, and set ( )
id

P t  to the better performance. 

( ) ( ( )) ( ( ))
( 1)

( ) ( ( )) ( ( ))

id id id

id

id id id

P t Fit P t Fit X t
P t

X t Fit P t Fit X t


  



 

(5) Set the global best ( 1)
gd

P t   to the position of the particle with the best fitness in the 

swarm; 

(6) Sort the particles according to the fitness values. A new swarm ( 1)S t   is obtained 

by eliminating the L  particles whose fitness values are in the last L  positions of the 

list; 

(7) Optimize the position of each particle in the new swarm ( 1)S t   according to k-
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means clustering principle; 

(8) Change the velocity vector ( 1)
id

V t  for each particle according to Eq. (27); 

(9) Update each particle position in ( 1)S t  ; 

(10) Go to step (3), and repeat the process until the maximum iteration number or the 

minimum error is reached. 

4.2.4.3 Mammary Gland Image Segmentation 

The EPSO clustering algorithm is applied to mammary gland image segmentation. 

The pixels’ intensities are the inputs of the EPSO clustering algorithm, and the pixels are 

grouped according to the optimum centers of EPSO clustering. In the proposed method, 

based on experimental results, N is initialized to be 65, and L is 5. Because the intensities 

of the pixels belonging to a lesion are very low, the group of pixels with the lowest 

intensities can be regarded the lesion-like pixels.  The mammary gland region is located 

by the following formula: 

 1
0 ( , )

( , )
255

g i j C
bw i j

otherw ise


 


 (4.10) 

where ( , )g i j  is the pixel in mammary gland region at the location ( , )i j , and 
1

C  is the 

cluster with the lowest intensities. bw  is the binary mammary gland image after 

segmentation.  

After the mammary gland is segmented, the round-like regions are reserved as the 

lesion-like regions and others are eliminated. The steps of the complete segmentation 

algorithm are shown in Figure 4.3. 
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Figure 4.3. Flowchart of the breast ultrasound image segmentation algorithm. 
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4.3 Experimental Results and Discussion 

The proposed segmentation method was tested on timages in the breast ultrasound 

images database described in Chapter 2. Here, experimental results are presented to 

demonstrate the performance of the proposed method. 

Figures 4.4(a), 4.5(a), and 4.6(a) are the original BUS images, in which most of 

the bright areas are the breast and muscle tissues, and the suspicious tumor areas are 

corrupted by speckle noise. Figures 4.4(b) through 4.6(b) are the segmentation results by 

experts. Figures 4.4(c) through 4.6(c) are the results after speckle reduction. Figures 4.4(d) 

through 4.6(d) show the mammary gland regions extracted from Figures 4.4(c) to 4.6(c). 

As can be seen from the images, after speckle reduction and enhancement, noise is 

removed while the edges are preserved, and the contrast between the background and 

suspected areas is greatly enhanced. Figures 4.4(e) through 4.6(e) are the enhancement 

results of mammary gland images, and Figures 4.4(f) through 4.6(f) are the segmentation 

results by the proposed approach. We compare the segmentation results with those of the 

method without speckle reduction and enhancement, which are shown in Figures 4.4(g) 

through 4.6(g). 

In Figure 4.4, an oval mass is corrupted by speckle noise. In Figure 4.4(f), the 

mass is segmented correctly, and the edge is distinct, which is more suitable for mass 

detection and classification. 

Figure 4.5(a) has a lesion with some branches at the center, which are an 

important indication in breast cancer diagnosis. In Figure 4.5(f), the mass and its 

branches are segmented correctly. 

Figure 4.6(a) displays a lesion with an ill-defined border. The segmentation result 



 

 

 

91 

in Figure 4.6(f) shows that the lesion border’s integrity is preserved well.  

The experiments demonstrate that the proposed algorithm performs well on BUS 

images with speckle noise, and segments lesions correctly. The proposed segmentation 

algorithm is less sensitive to noise because of the utilization of an effective speckle 

reduction algorithm. Furthermore, the EPSO clustering method reduces the 

computational time by 32.75% compared with the standard PSO clustering algorithm. 

EPSO clustering was implemented using Matlab 7.1, and the program was executed on a 

PC with a single processing unit Intel Pentium IV 3.0GHz and 1GMB random access 

memory. The average execution time was 157 second per image with an average size of 

500X600, while the average execution time using the conventional PSO clustering 

algorithm was 233 second per image. After segmentation, lesions can be detected and 

classified easier and better. 

A universally accepted objective criterion of the performance of segmentation 

algorithms does not yet exist. The match rate (MR) between the manually determined 

areas and the automatically located lesions by the proposed algorithm is used to 

quantitatively evaluate the performance of the proposed algorithm. The MR is defined as: 

 m a

m

A A
M R

A


  (4.11) 

where 
m

A  is the area of the tumor determined manually by radiologists and 
a

A is the area 

of the lesion determined automatically by the proposed algorithm. In our experiments on 

the 30 images, the average match rate of the proposed algorithm was 0.9627. The values 

of MR of Figures 4.4 through 4.6 are shown in Table 4.2. 
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(a)                                           (b)                                               (c) 

  

(d)    (e) 

  

(f)      (g) 

Figure 4.4. First example of breast ultrasound image segmentation. (a) 

Original image. (b) Expert segmentation. (c) Image after speckle reduction. 

(d) Extracted mammary gland image. (e) Enhanced mammary gland image. 

(f) Segmentation result. (g) Segmentation result without speckle reduction 

and enhancement. 
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(a)    (b)     (c) 

  

(d)   (e) 

  

(f)   (g) 

Figure 4.5. Second example of breast ultrasound image segmentation. (a) 

Original image. (b) Expert segmentation. (c) Image after speckle reduction. 

(d) Extracted mammary gland image. (e) Enhanced mammary gland image. 

(f) Segmentation result. (g) Segmentation result without speckle reduction 

and enhancement. 
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(a)    (b)     (c) 

  

 (d)    (e) 

  

(f)    (g) 

Figure 4.6. Third example of breast ultrasound image segmentation. (a) 

Original image. (b) Expert segmentation. (c) Image after speckle reduction. 

(d) Extracted mammary gland image. (e) Enhanced mammary gland image. 

(f) Segmentation result. (g) Segmentation result without speckle reduction 

and enhancement. 
 

Table 4.2. MR Values of Segmentation Results. 

Image MR of the proposed method 

MR of the proposed method without 

speckle reduction and enhancement 

Figure 4.4 0.9543 0.8932 

Figure 4.5 0.9842 0.9553 

Figure 4.6 0.9584 0.8784 
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4.4 Conclusion 

Breast cancer is one of the most common cancers and is a leading cause of death 

among women. The automated segmentation of BUS images is an essential issue for 

CAD systems.  However, most existing algorithms are only for segmenting ROIs. In this 

dissertation, a BUS image segmentation algorithm based on EPSO clustering is proposed. 

The major advantage of the proposed algorithm is that it can handle the entire image 

automatically and accurately instead of focusing exclusively on ROIs, since it utilizes the 

characteristics of mammary gland of the BUS images. Also, the algorithm has very low 

computational time and complexity. The proposed approach may find wide applications 

in automatic lesion classification and CAD systems for breast cancer detection. 
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CHAPTER 5 

CONCLUSION 

Medical imaging plays a significant role in medical diagnosis. This dissertation 

aims to improve the accuracy of computer-aided detections system in ultrasound imaging. 

Medical ultrasound imaging is a key tool in medical diagnosis.  

Using breast ultrasound image characteristics as a touchstone, this dissertation 

proposes three algorithms: image speckle noise reduction, breast ultrasound image 

enhancement, and breast ultrasound image segmentation, which are all applied to breast 

cancer computer-aided detection. The primary innovations contained herein are as 

follows: 

1. To deal with speckle noise in the medical ultrasound image, this dissertation 

proposes a novel approach for speckle reduction using 2D homogeneity and 

directional average filters to remove speckle noise in an ultrasound image. 

The algorithm uses texture information to describe the speckle noise of 

ultrasound images, and ultrasound image is transformed from a gray level 

domain to a homogeneity domain. The speckle noise is removed by a new 

directional filter operation. Experiments show that this method can effectively 

reduce noise while still preserving details. This algorithm can be applied to 

preprocessing in CAD systems and achieves a better performance on speckle 

reduction than other methods. 

2. To deal with the low contrast and fuzzy nature of breast ultrasound images, 

this dissertation proposes a novel breast ultrasound image enhancement 

algorithm based on fuzzy logic, which not only takes into account global 
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information, but also uses local information: fuzzy domains edge and texture 

information.  Clinical experiments show that the features of an image, such as 

mass, microcalcification, internal echo, etc. are well enhanced. In addition, 

over-enhancement and under-enhancement are avoided. The algorithm is of 

great significance to improving the accuracy of breast cancer diagnosis. 

3. Image segmentation is an important step for computer-aided detection. 

Medical ultrasound images have inherent speckle noise, and human tissue 

texture feature makes segmentation more difficult. Using characteristics of 

breast images as well as the structure of breast tissue as a touchstone, this 

dissertation proposes an eliminating particle swarm optimization (EPSO) 

clustering analysis, which transform segmentation problem into clustering 

analysis. Its advantage is to handle the entire image without manual selecting 

ROIs. It significantly reduces the diagnostician’s workload, and achieves 

automatic breast cancer detection. In addition, it can greatly improve the 

accuracy of tumor detection.  The segmentation result is very useful for 

doctors in making diagnoses. In addition, compared with the traditional 

particle swarm algorithm, this algorithm reduces the number of particles, and 

the computation time. 

In summary, this study successfully solved three important computer-aided 

detection problems by systematically developing medical image preprocessing methods 

that can be improve images’ quality and aid doctors in detecting tumors on images. 

The complexity of computer-aided detection of breast cancer has presented a great 

challenge to ultrasound image processing algorithms, which leaves much space for 
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further research. Although this dissertation has made some progress on computer-aided 

detection, there are many aspects need to be studied in the future in order to achieve 

better performance and accuracy. Future research will focus on improving and extending 

existing methods and application to clinical practice, while closely tracking the new 

technologies for disease detection and diagnosis. The future works for this dissertation 

are described as follows: 

1. The enhancement algorithm is evaluated using clinical trials, which has a 

certain subjective. How to evaluate an enhancement algorithm need to be 

studied. 

2. This segmentation method should be studied more, and more features of 

ultrasound image and characteristics of breast tissue should be considered and 

employed in future study. In addition, more effective rules should be studied 

to detect the true lesion regions and eliminate the non-lesion regions. 

3. This dissertation only deals with the B mode ultrasound images, which are 

two dimensional gray-scale images. Three dimensional ultrasound images and 

Doppler ultrasound are widely used recently. The further research will extend 

the current algorithms to these new images. 
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