WO2013156695A1 - Device for controlling energy conversion in hybrid thermal and photovoltaic solar concentrators - Google Patents

Device for controlling energy conversion in hybrid thermal and photovoltaic solar concentrators Download PDF

Info

Publication number
WO2013156695A1
WO2013156695A1 PCT/FR2013/000107 FR2013000107W WO2013156695A1 WO 2013156695 A1 WO2013156695 A1 WO 2013156695A1 FR 2013000107 W FR2013000107 W FR 2013000107W WO 2013156695 A1 WO2013156695 A1 WO 2013156695A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
sensor
concentrator according
radiation
energy
Prior art date
Application number
PCT/FR2013/000107
Other languages
French (fr)
Inventor
Joël GILBERT
Original Assignee
Sunpartner, S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunpartner, S.A.S. filed Critical Sunpartner, S.A.S.
Publication of WO2013156695A1 publication Critical patent/WO2013156695A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • F24S40/52Preventing overheating or overpressure by modifying the heat collection, e.g. by defocusing or by changing the position of heat-receiving elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to mixed solar concentrators and more particularly to those which make it possible to make cogeneration of solar energy, that is to say to transform solar energy into two types of energy, namely, partly in electrical energy and partly in heat energy.
  • concentrating solar collectors convert solar energy into only one other energy, for example, electrical energy through photovoltaic cells, or heat energy through thermal sensors.
  • photovoltaic cells transform only 20 to 30% of the solar energy received into electricity. The rest of the received solar energy is typically lost in heat dissipated in the atmosphere and which leads to the passage of warming of the cell and a loss of its efficiency.
  • Concentrated solar photovoltaic collectors are already known that recover both the electrical energy generated and the heat energy not converted into electricity, which is recovered mainly by circulating a heat transfer liquid in thermal contact with the photovoltaic cell. This operation also lowers the temperature of the cell, which increases its efficiency, since it is known that the conversion efficiency of the photovoltaic cells decreases beyond a certain temperature.
  • the main purpose of the invention is to overcome the aforementioned drawbacks of known mixed solar concentrators.
  • the invention aims to describe a device that will allow on the one hand to capture and focus solar energy, and then convert it into electrical energy and heat energy, without the disadvantages of known CHP systems .
  • the invention also aims to provide a solar concentrator capable of controlling in real time the amount of solar energy that will be converted into electricity and that which will be transformed into heat calories. This controlled distribution between the two modes of conversion of solar energy will have to be made according to the light conditions, according to the needs and / or according to the performances and the required returns. Indeed a photovoltaic cell is expensive, and increase the intensity and duration of its operation can then increase its profitability.
  • the subject of the invention is a new solar concentrator which comprises firstly at least a first and a second optical concentration of solar radiation and secondly at least a first and a second sensor to which said optical concentrating, preferably respectively, the incident solar radiation.
  • Each of two sensors has a type of energy conversion having different modes of solar energy conversion.
  • This new solar concentrator further comprises means for controlling the distribution of solar radiation between the two sensors. In this way, it is possible to direct the concentrated solar radiation, or only a part of its spectrum, to this or that sensor, depending on the needs or depending on the brightness.
  • said means for controlling the distribution of solar radiation are automated and receive as input a signal representative of the priority to be allocated to the production of one type of energy compared to another type of energy. energy, this signal is then used to control the distribution of concentrated solar radiation between the two sensors whose energy conversion modes are different.
  • the signal used is for example constituted by a real-time measurement of the ambient brightness, and the control of the distribution of the radiation between the different sensors is done continuously or in short time intervals, for example of the order of a few seconds .
  • said sensors comprise at least one sensor for converting solar energy into electrical energy, and a sensor for converting solar energy into heat energy.
  • the sensor which converts solar energy into electrical energy comprises at least one photovoltaic sensor to which all or part of the incident solar radiation is concentrated, and the sensor which ensures the conversion of the solar energy.
  • solar energy into heat energy is constituted by at least one thermal sensor to which is directed the part of the incident solar radiation which is not directed towards the photovoltaic sensor.
  • the thermal sensor is positioned between the first and second optics and the photovoltaic sensor is positioned between the second optic and the optical zone. concentration of the solar radiation of this second optic, but other arrangements are possible.
  • the first and / or second optical concentrator is composed of either parabolic or cylindro-parabolic mirrors, or lenses or Fresnel lenses whose focal lengths are point or rectilinear, or a combination of these different optics.
  • the means for distributing the concentrated solar radiation between the thermal sensor and the photovoltaic sensor is a flat mirror with a high reflection index which is positioned in front of the second optic, its reflecting face facing the first optics. Said mirror reflects towards the thermal sensor and passes to the photovoltaic sensor a more or less important part of the concentrated solar radiation by the first optics, the relative value of this part being variable according to the surface of the mirror which actually intercepts, and therefore which reflects, said solar radiation concentrated by the first optics.
  • the first concentration optics of the concentrator is a Fresnel lens whose focal length is linear
  • the second concentration optics of the concentrator is composed of a plurality of Fresnel lenses whose focal lengths are linear, said Fresnel lenses are arranged so that their rectilinear focal lengths are perpendicular to the rectilinear focal length of the first Fresnel lens,
  • the mirror which allows the distribution of the concentrated solar radiation towards the thermal sensor and towards the photovoltaic sensor is a plane mirror parallel to the surface of the plurality of Fresnel lenses composing the second optics, the surface of said mirror being able to intercept and thus reflect towards the thermal sensor from zero to one hundred percent of said concentrated solar radiation,
  • the first sensor is a linear thermal sensor placed between the first Fresnel lens and the plurality of second Fresnel lenses so that the surface of said thermal sensor receives the concentrated beam of the first Fresnel lens after its partial reflection on the surface of the Fresnel lens; distribution mirror, noting that the shape of the focal length of the first Fresnel lens remains linear even after the partial reflection of the concentrated beam on the surface of said mirror,
  • the second sensor is a photovoltaic sensor consisting of a plurality of photovoltaic cells disposed in the solar radiation concentration zones after it has passed through the two optical concentrating. These solar radiation concentration zones are preferably approximately square, circular or point shaped. The intensity of the solar radiation received by the photovoltaic cells can thus vary according to the position of the mirror.
  • the second concentrating optics comprises a plurality of Fresnel lenses whose planar face is treated so as to reflect a part of the solar spectrum, preferably the infrared radiation, of so that this reflected radiation is redirected to the first sensor which will preferably be a thermal sensor, and so that the second sensor, preferably a photovoltaic sensor, does not receive the reflected radiation, for example the infrared, which will limit its warming up.
  • the surface treatment is replaced by a reflective infrared filter which is arranged in front of or behind the second optical concentrator.
  • the concentrator can be set so that the intensity of solar radiation that is received by the photovoltaic sensor remains substantially constant, even when the light intensity of the sun varies. However, when the amount of solar radiation energy received by the photovoltaic cell decreases, then that received by the thermal sensor will increase by the same amount.
  • the thermal sensor is for example constituted by a metallic pipe traversed by a coolant, gaseous or liquid, such as air, water or a mixture of water and glycol.
  • the thermal sensor comprises for example a copper surface covered with a layer of colloidal titanium, said surface being placed under vacuum so as to increase the thermal insulation with the outside.
  • the photovoltaic sensor is constituted by a plurality of photovoltaic cells for example of crystalline silicon type, organic, monolayer or muiti layers, or a combination of these different known types, or by any new type of photovoltaic cell according to new developments. cell technologies.
  • the photovoltaic sensor can be equipped with a cell cooling system, such as a passive radiator or a radiator with fluid circulation.
  • the solar concentrator including both sensors, is mounted on a sun follower to receive a maximum of direct radiation from the sun during the seasonal and seasonal movement of the latter.
  • the solar concentrator and its two sensors are fixed relative to the ground and use at least one heliostat to redirect the solar radiation to the first optics.
  • the position of the distribution mirror is variable and controlled by an electromechanical automation so as for example to maintain constant the amount of energy of the solar radiation received by the photovoltaic cells that changes in the intensity of solar radiation during the day and during the seasons can be offset by an inversely proportional change in the concentration rate applied to the cells.
  • This radiation stability of the cell will have the advantage of minimizing thermal shocks at the cells and minimizing the peaks of electrical power to be absorbed by the electrical components such as inverters and transformers.
  • the position of the mirror will be such that almost all the concentrated solar radiation will be reflected on its surface of said mirror and directed towards the thermal sensor.
  • the invention also relates to a device consisting of a plurality of solar concentrators according to the invention, all the concentrators then being connected by a mechanical and / or electrical connection so that all the movements and displacements of the different parts of the unit concentrators are done at the same time and in the same way, in particular the displacement of all the mirrors.
  • a mechanical and / or electrical connection so that all the movements and displacements of the different parts of the unit concentrators are done at the same time and in the same way, in particular the displacement of all the mirrors.
  • Figure 1 is a block diagram in section of the device according to the invention.
  • FIG. 2 illustrates the invention in a particular embodiment where the first focusing optics is a linear Fresnel lens and the second focusing optics a plurality of linear Fresnel lenses whose focal lengths are perpendicular to the first optic.
  • the solar concentrator is composed of a first concentration optics (2), a second concentration optics (3), a first sensor (4) and a second sensor (5).
  • the solar radiation (1) is first concentrated by the first optics (2).
  • the concentrated solar radiation (6a, 6b) is then either reflected (7b) by a mirror (8) to the first target (4), or passes through the second concentration optics (3) to focus (9) on the second target (5).
  • the second concentrating optic (3) has an optically treated plane surface (10) for reflecting a portion of the solar spectrum (7a), especially infrared radiation.
  • the radiation (9) which passes through the second optical (3) will heat less the second sensor (5) which will be an advantage if the sensor (5) is a photovoltaic sensor.
  • the infrared radiation (7a) which is reflected by the second optics (3) will continue its trajectory to the first sensor (4), which will be an advantage if this sensor (4) is a thermal sensor.
  • the mirror (8) can move in such a way as to vary the amount of light (9) passing through the second optics (3) to the second sensor (5) and the amount of light (7a, 7b) reflected to the first sensor (4).
  • This variable and possibly controlled distribution of solar energy on the two sensors (4,5) will for example lead to a production of electricity and calories itself variable according to needs, which is the purpose of the invention.
  • an automation (not shown) will keep to a maximum the amount of energy (9) received by the photovoltaic cells (5) even during the brightness variations of the sun.
  • FIG. 2 illustrates an example of a solar concentrator according to the invention.
  • the first concentration optic (2) is a linear Fresnel lens whose straight focal length is horizontal.
  • the second concentration optic (3) is a plurality of linear Fresnel lenses whose straight focal lengths are vertical. Said Fresnel lenses (3) are covered on their flat face with a film (10) which reflects infrared radiation (7a).
  • the first sensor (4) is a linear thermal sensor placed between the first optics (2) and the second optics (3).
  • the second sensor (5) is a photovoltaic sensor placed at the focus of the second optical concentrator (3).
  • the relative position of the first optics (2) and the second optics (3) is such that the focal lengths of these two optics (2, 3) are in the same place, in this example it is at this point that is positioned the second sensor (5).
  • the concentrated beam (6a, 6b) by the first Fresnel lens (2) has a linear focal length but this beam is transformed as it passes through the plurality of Fresnel lenses of the second optics (3) into a plurality of beams (9) whose focal lengths are punctual and individually illuminate a plurality of photovoltaic cells (lla, llb .... llh).
  • the infrared radiation (7a) which is reflected by the treated surface (10) of the second optics (3) is directed and concentrated linearly along the thermal sensor (4).
  • a plane mirror (8) whose reflecting surface is turned towards the thermal sensor (4) is positioned in front of the second optic (3) so as to intercept a portion (6b) of the concentrated beam of the first optic (2) and at the direct (7b) also towards the thermal sensor (4).
  • This part (6b) radiation that is intercepted by the mirror (8) is variable depending on the position of said mirror (8).
  • the position of said mirror (8) can be controlled by an electromechanical automatism (not shown) so as to keep constant the amount of energy of the solar radiation (9) received by the photovoltaic cells (11a, ... llh), namely that the variations in intensity of the solar radiation (1) that occur during the day and during the seasons can be compensated by an inversely proportional variation in the amount of light (9) that will pass through the second optics (3).
  • FIG. 2 A concrete example of embodiment is now described (FIG. 2)
  • a device consists of a first concentration optic (2) in the form of a square Fresnel lens in transparent poly methyl methacrylate of 100 cm square and 4 mm thick.
  • This first Fresnel lens (2) is of linear focal length and its focal length is 100 cm.
  • the Fresnel lens (2) receives, perpendicular to its surface, the sunlight (1) of a heliostat which illuminates it in its entirety.
  • the second concentrating optics (3) is composed of a juxtaposition of eight identical 40 x 12 cm Fresnel lenses with linear focal lengths and focal lengths of 40 cm. The focal lengths of these eight lenses are all parallel to each other and perpendicular to the focal length of the first Fresnel lens (2).
  • This second concentration optic (3) is placed at 60 cm and parallel to the first Fresnel lens (2) so that the focal areas of all the lenses meet at the same location at 40 cm from the eight Fresnel lenses (3) .
  • a photovoltaic module (5) consisting of eight photovoltaic cells (11a, 11h) square crystalline silicon 2 cm sides, so that each cell receives the concentrated solar radiation (9) by the first (2) and the second (3) optical concentration.
  • a linear thermal sensor (4) consists of a black anodized aluminum tube placed in the center of a vacuum borosilicate glass tube. The longitudinal axis of this thermal sensor is placed parallel to the linear focal length of the first Fresnel lens (2) and 40 cm from it between the two focusing optics (2,3).
  • This thermal sensor is traversed by a coolant made of a mixture of water and glycol in a proportion of 80/20.
  • a glass mirror (8) of 100 x 40 cm and 4 mm thick is positioned parallel to the surfaces of the Fresnei lenses (2,3), its reflecting surface facing the first Fresnei lens (2) and placed in front of the alignment of the eight Fresnei lenses (3) so that this mirror (8) can intercept and reflect a more or less important part of the concentrated radiation by the first lens (2) according to its position in front of the second optics (3).
  • the reflected rays (7b) by the mirror (8) are then linearly concentrated on the thermal sensor (4) while the rays (9) passing through the eight Fresnei lenses (3) focus punctually on the eight photovoltaic cells (lla .. llh).
  • an infrared reflecting filter (10) of 100 x 40 cm is placed on the surface of the second optics (3) so that the infrared radiation (7a) is reflected. towards the thermal sensor (4).
  • the concentrator is set so that under a solar intensity of 1000 W / m2 each photovoltaic cell (lla, ... llh) receives concentrated solar radiation by 50, which corresponds to a mirror position (8) covering 4 / 5th of the surface of the second optics (3) and thus reflecting towards the thermal sensor 4 / 5th of the solar energy received by the first Fresnei lens (2). 1/5 of the solar energy alone illuminates the eight photovoltaic cells, ie 200 W divided by eight which equals 25W per cell.
  • photovoltaic cells (lla, ... llh) have been exploited to the maximum of their profitability because they will have worked to the maximum of their production possibilities (maximum solar concentration for a maximum of time).
  • the invention meets the goals and allows to capture, focus, and transform solar energy into electricity and calories, while controlling the amount of solar energy that will be converted into electricity and the amount that will be converted into energy. calorific, this distribution can be made in real time and depending on the ambient light conditions.
  • Electric and heat is made possible by the real-time position of a power distributor, for example a mirror (8), this position taking into account the ambient light conditions (clear sun, veiled sun, etc.). ), which makes it possible to favor one form of energy or another according to the needs and / or according to the desired performances and returns for one sensor or the other.

Abstract

Solar concentrators that convert solar energy both into electrical power and heat energy do not control the proportion of electrical power which is produced with respect to that of heat energy. This proportion is left to fluctuate with fluctuations in the light intensity of the sun whereas it might be beneficial to promote the production of either electrical power or heat energy. The invention describes a device that allows production to be controlled in this way. This device is composed of two solar concentrator lenses (2, 3), preferably linear Fresnel lenses; a rectilinear thermal sensor (4); a photovoltaic sensor (5) composed of a plurality of photovoltaic cells (11a,..., 11h); optionally, a reflective infrared filter (10); and a mirror (8) the position of which can be varied, thereby varying the illumination received by the thermal sensor (4) and the photovoltaic sensor (5), the two being inversely proportional. Automatic regulation is used to regulate the light intensity received by the cells (11a,...,11h) even when the luminosity of the sun varies.

Description

Dispositif pour contrôler les conversions d'énergie dans les concentrateurs solaires mixtes thermiques et photovoltaïques  Device for controlling energy conversions in mixed solar thermal and photovoltaic concentrators
La présente invention se rapporte aux concentrateurs solaires mixtes et plus particulièrement à ceux qui permettent de faire de la cogénération d'énergie solaire, c'est-à-dire de transformer l'énergie solaire en deux types d'énergie, à savoir pour partie en énergie électrique et pour partie en énergie calorifique. The present invention relates to mixed solar concentrators and more particularly to those which make it possible to make cogeneration of solar energy, that is to say to transform solar energy into two types of energy, namely, partly in electrical energy and partly in heat energy.
ETAT DE LA TECHNIQUE STATE OF THE ART
La plupart des capteurs solaires à concentration ne transforment l'énergie solaire qu'en une seule autre énergie, par exemple soit en énergie électrique grâce à des cellules photovoltaïques, soit en énergie calorifique grâce à des capteurs thermiques. Most concentrating solar collectors convert solar energy into only one other energy, for example, electrical energy through photovoltaic cells, or heat energy through thermal sensors.
Pourtant il est intéressant de collecter aussi l'énergie calorifique qui apparaît lors de l'utilisation des cellules photovoltaïques. En effet les cellules photovoltaïques ne transforment que 20 à 30% de l'énergie solaire reçue, en électricité. Le reste de l'énergie solaire reçue est typiquement perdu en chaleur dissipée dans l'atmosphère et qui entraine au passage réchauffement de la cellule et une perte de son efficacité.  Yet it is interesting to also collect the heat energy that appears when using photovoltaic cells. In fact, photovoltaic cells transform only 20 to 30% of the solar energy received into electricity. The rest of the received solar energy is typically lost in heat dissipated in the atmosphere and which leads to the passage of warming of the cell and a loss of its efficiency.
On connaît déjà des capteurs solaires photovoltaïques sous concentration qui récupèrent à la fois l'énergie électrique générée et l'énergie calorifique non transformée en électricité, qui est récupérée principalement en faisant circuler un liquide caloporteur en contact thermique avec la cellule photovoltaïque. Cette opération permet aussi d'abaisser la température de la cellule, ce qui augmente son efficacité, puisqu'on sait que le rendement de conversion des cellules photovoltaïques diminue au-delà d'une certaine température.  Concentrated solar photovoltaic collectors are already known that recover both the electrical energy generated and the heat energy not converted into electricity, which is recovered mainly by circulating a heat transfer liquid in thermal contact with the photovoltaic cell. This operation also lowers the temperature of the cell, which increases its efficiency, since it is known that the conversion efficiency of the photovoltaic cells decreases beyond a certain temperature.
Mais ces capteurs à cogénération d'énergie électrique et d'énergie calorifique connus utilisent les cellules photovoltaïques comme capteurs thermiques uniquement à titre accessoire et pour limiter les pertes, ce qui ne correspond pas à leur fonction dédiée de conversion d'énergie solaire en énergie électrique. Cet usage accessoire offre par conséquent un rendement de conversion médiocre. En outre, les capteurs solaires mixtes sous concentration de ce type ne permettent pas de contrôler la part d'énergie solaire qui sera transformée en électricité et la part qui sera transformée en énergie calorifique. Ce partage reste aléatoire et dépend principalement des conditions climatiques et d'ensoleillement du concentrateur solaire, alors qu'il pourrait être intéressant de privilégier de façon contrôlée la production d'électricité ou la production de chauffage en fonction des besoins. Ainsi en hiver il est plus intéressant de transformer l'énergie solaire en calories pour le chauffage des habitations que de la transformer en l'énergie électrique, étant donné que les rendements de la conversion en énergie calorifique sont bien meilleurs que ceux de la conversion en énergie électrique. But these sensors for cogeneration of electrical energy and heat energy use photovoltaic cells as heat sensors only as an accessory and to limit losses, which does not correspond to their dedicated function of converting solar energy into electrical energy. . This accessory use therefore offers a poor conversion efficiency. In addition, concentrated solar collectors of this type do not control the share of solar energy that will be converted into electricity and the part that will be converted into heat energy. This sharing remains uncertain and depends mainly on the climatic conditions and sunshine of the solar concentrator, while it might be interesting to focus in a controlled manner the production of electricity or the production of heating according to needs. Thus in winter it is more interesting to transform solar energy into calories for heating homes than to transform it into electric energy, since the conversion efficiency of heat energy is much better than that of conversion to energy. electric energy.
BUT DE L'INVENTION PURPOSE OF THE INVENTION
L'invention a pour but principal de remédier aux inconvénients précités des concentrateurs solaires mixtes connus. En particulier, l'invention a pour but de décrire un dispositif qui va permettre d'une part de capturer et de concentrer l'énergie solaire, puis de la transformer en énergie électrique et en énergie calorifique, sans les inconvénients des systèmes à cogénération connus. L'invention a également pour but de proposer un concentrateur solaire capable de contrôler en temps réel la quantité d'énergie solaire qui sera transformée en électricité et celle qui sera transformée en calories thermiques. Cette répartition contrôlée entre les deux modes de conversion de l'énergie solaire devra être faite en fonction des conditions de luminosité, en fonction des besoins et/ou en fonction des performances et des rentabilités demandées. En effet une cellule photovoltaïque est coûteuse, et augmenter l'intensité et la durée de son fonctionnement permet alors d'augmenter sa rentabilité. The main purpose of the invention is to overcome the aforementioned drawbacks of known mixed solar concentrators. In particular, the invention aims to describe a device that will allow on the one hand to capture and focus solar energy, and then convert it into electrical energy and heat energy, without the disadvantages of known CHP systems . The invention also aims to provide a solar concentrator capable of controlling in real time the amount of solar energy that will be converted into electricity and that which will be transformed into heat calories. This controlled distribution between the two modes of conversion of solar energy will have to be made according to the light conditions, according to the needs and / or according to the performances and the required returns. Indeed a photovoltaic cell is expensive, and increase the intensity and duration of its operation can then increase its profitability.
RESUME DE L'INVENTION Dans son principe de base, l'invention a pour objet un nouveau concentrateur solaire qui comporte d'une part au moins une première et une deuxième optique de concentration du rayonnement solaire et d'autre part au moins un premier et un deuxième capteur vers lequel lesdites optiques de concentration concentrent, de préférence respectivement, le rayonnement solaire incident. Chacun de deux capteurs possède un type de conversion énergétique ayant des modes de conversion de l'énergie solaire différents. Ce nouveau concentrateur solaire comporte en outre des moyens de contrôle de la répartition du rayonnement solaire entre les deux capteurs. De cette manière, il est possible de diriger le rayonnement solaire concentré, ou une partie seulement de son spectre, vers tel ou tel capteur, en fonction des besoins ou en fonction de la luminosité. SUMMARY OF THE INVENTION In its basic principle, the subject of the invention is a new solar concentrator which comprises firstly at least a first and a second optical concentration of solar radiation and secondly at least a first and a second sensor to which said optical concentrating, preferably respectively, the incident solar radiation. Each of two sensors has a type of energy conversion having different modes of solar energy conversion. This new solar concentrator further comprises means for controlling the distribution of solar radiation between the two sensors. In this way, it is possible to direct the concentrated solar radiation, or only a part of its spectrum, to this or that sensor, depending on the needs or depending on the brightness.
Selon une variante avantageuse de l'invention, lesdits moyens de contrôle de la répartition du rayonnement solaire sont automatisés et reçoivent en entrée un signal représentatif de la priorité à allouer à la production d'un type d'énergie par rapport à un autre type d'énergie, ce signal étant alors utilisé pour piloter la répartition du rayonnement solaire concentré entre les deux capteurs dont les modes de conversion énergétique sont différents. Le signal utilisé est par exemple constitué par une mesure en temps réel de la luminosité ambiante, et le pilotage de la répartition du rayonnement entre les différents capteurs est fait en continu ou par intervalles de temps courts, par exemple de l'ordre de quelques secondes.  According to an advantageous variant of the invention, said means for controlling the distribution of solar radiation are automated and receive as input a signal representative of the priority to be allocated to the production of one type of energy compared to another type of energy. energy, this signal is then used to control the distribution of concentrated solar radiation between the two sensors whose energy conversion modes are different. The signal used is for example constituted by a real-time measurement of the ambient brightness, and the control of the distribution of the radiation between the different sensors is done continuously or in short time intervals, for example of the order of a few seconds .
Selon une variante concrète avantageuse du concentrateur selon l'invention, lesdits capteurs comportent au moins un capteur à conversion de l'énergie solaire en énergie électrique, et un capteur à conversion de l'énergie solaire en énergie calorifique.  According to an advantageous concrete variant of the concentrator according to the invention, said sensors comprise at least one sensor for converting solar energy into electrical energy, and a sensor for converting solar energy into heat energy.
A titre d'exemple non limitatif, le capteur qui assure la conversion de l'énergie solaire en énergie électrique comporte au moins un capteur photovoltaïque vers lequel est concentrée tout ou partie du rayonnement solaire incident, et le capteur qui assure la conversion de l'énergie solaire en énergie calorifique est constitué par au moins un capteur thermique vers lequel est dirigée la part du rayonnement solaire incident qui n'est pas dirigée vers le capteur photovoltaïque.  By way of nonlimiting example, the sensor which converts solar energy into electrical energy comprises at least one photovoltaic sensor to which all or part of the incident solar radiation is concentrated, and the sensor which ensures the conversion of the solar energy. solar energy into heat energy is constituted by at least one thermal sensor to which is directed the part of the incident solar radiation which is not directed towards the photovoltaic sensor.
Selon un agencement avantageux des deux capteurs et des deux optiques, le capteur thermique est positionné entre la première et la deuxième optique et le capteur photovoltaïque est positionné entre la deuxième optique et la zone de concentration du rayonnement solaire de cette deuxième optique, mais d'autres agencements sont possibles. According to an advantageous arrangement of the two sensors and the two optics, the thermal sensor is positioned between the first and second optics and the photovoltaic sensor is positioned between the second optic and the optical zone. concentration of the solar radiation of this second optic, but other arrangements are possible.
De préférence, le premier et/ou le deuxième concentrateur optique est composé soit de miroirs paraboliques ou cylindro-paraboliques, soit de lentilles ou de lentilles de Fresnel dont les focales sont ponctuelles ou rectilignes, soit d'une combinaison de ces différentes optiques.  Preferably, the first and / or second optical concentrator is composed of either parabolic or cylindro-parabolic mirrors, or lenses or Fresnel lenses whose focal lengths are point or rectilinear, or a combination of these different optics.
De préférence toujours, le moyen qui permet de répartir le rayonnement solaire concentré entre le capteur thermique et le capteur photovoltaïque est un miroir plan à fort indice de réflexion qui se positionne devant la deuxième optique, sa face réfléchissante tournée vers la première optique. Ledit miroir réfléchit vers le capteur thermique et laisse passer vers le capteur photovoltaïque une part plus ou moins importante du rayonnement solaire concentré par la première optique, la valeur relative de cette part étant variable en fonction de la surface du miroir qui intercepte réellement, et donc qui réfléchit, ledit rayonnement solaire concentré par la première optique.  Preferably still, the means for distributing the concentrated solar radiation between the thermal sensor and the photovoltaic sensor is a flat mirror with a high reflection index which is positioned in front of the second optic, its reflecting face facing the first optics. Said mirror reflects towards the thermal sensor and passes to the photovoltaic sensor a more or less important part of the concentrated solar radiation by the first optics, the relative value of this part being variable according to the surface of the mirror which actually intercepts, and therefore which reflects, said solar radiation concentrated by the first optics.
Selon une première variante de l'invention :  According to a first variant of the invention:
- la première optique de concentration du concentrateur est une lentille de Fresnel dont la focale est linéaire,  the first concentration optics of the concentrator is a Fresnel lens whose focal length is linear,
- la deuxième optique de concentration du concentrateur est composée d'une pluralité de lentilles de Fresnel dont les focales sont linéaires, lesdites lentilles de Fresnel sont disposées de sorte que leurs focales rectilignes soient perpendiculaires à la focale rectiligne de la première lentille de Fresnel,  the second concentration optics of the concentrator is composed of a plurality of Fresnel lenses whose focal lengths are linear, said Fresnel lenses are arranged so that their rectilinear focal lengths are perpendicular to the rectilinear focal length of the first Fresnel lens,
- le miroir qui permet la répartition du rayonnement solaire concentré vers le capteur thermique et vers le capteur photovoltaïque est un miroir plan parallèle à la surface de la pluralité des lentilles de Fresnel composants la deuxième optique, la surface dudit miroir pouvant intercepter et donc réfléchir vers le capteur thermique de zéro à cent pour-cent dudit rayonnement solaire concentré,  the mirror which allows the distribution of the concentrated solar radiation towards the thermal sensor and towards the photovoltaic sensor is a plane mirror parallel to the surface of the plurality of Fresnel lenses composing the second optics, the surface of said mirror being able to intercept and thus reflect towards the thermal sensor from zero to one hundred percent of said concentrated solar radiation,
- le premier capteur est un capteur thermique linéaire placé entre la première lentille de Fresnel et la pluralité des deuxièmes lentilles de Fresnel de sorte que la surface dudit capteur thermique reçoive le faisceau concentré de la première lentille de Fresnel après sa réflexion partielle à la surface du miroir de répartition, en remarquant que la forme de la focale de la première lentille de Fresnel reste linéaire même après la réflexion partielle du faisceau concentré à la surface dudit miroir,the first sensor is a linear thermal sensor placed between the first Fresnel lens and the plurality of second Fresnel lenses so that the surface of said thermal sensor receives the concentrated beam of the first Fresnel lens after its partial reflection on the surface of the Fresnel lens; distribution mirror, noting that the shape of the focal length of the first Fresnel lens remains linear even after the partial reflection of the concentrated beam on the surface of said mirror,
- le deuxième capteur est un capteur photovoltaïque constitué d'une pluralité de cellules photovoltaïques disposées dans les zones de concentration du rayonnement solaire après que celui-ci ait traversé les deux optiques de concentration. Ces zones de concentration du rayonnement solaire sont de préférence de forme approximativement carrées, circulaires ou ponctuelles. L'intensité du rayonnement solaire reçu par les cellules photovoltaïques pourra ainsi varier en fonction de la position du miroir. - The second sensor is a photovoltaic sensor consisting of a plurality of photovoltaic cells disposed in the solar radiation concentration zones after it has passed through the two optical concentrating. These solar radiation concentration zones are preferably approximately square, circular or point shaped. The intensity of the solar radiation received by the photovoltaic cells can thus vary according to the position of the mirror.
Selon un autre mode de réalisation particulier du concentrateur solaire selon l'invention, la deuxième optique de concentration comprend une pluralité de lentilles de Fresnel dont la face plane est traitée de manière à réfléchir une partie du spectre solaire, de préférence le rayonnement infrarouge, de sorte que ce rayonnement réfléchi soit redirigé vers le premier capteur qui sera de préférence un capteur thermique, et de sorte que le deuxième capteur, de préférence un capteur photovoltaïque, ne reçoive pas le rayonnement réfléchi, par exemple l'infrarouge, ce qui limitera son échauffement. Selon une variante de ce mode de réalisation le traitement de surface est remplacé par un filtre infrarouge réflectif qui est disposé devant ou derrière la deuxième optique de concentration.  According to another particular embodiment of the solar concentrator according to the invention, the second concentrating optics comprises a plurality of Fresnel lenses whose planar face is treated so as to reflect a part of the solar spectrum, preferably the infrared radiation, of so that this reflected radiation is redirected to the first sensor which will preferably be a thermal sensor, and so that the second sensor, preferably a photovoltaic sensor, does not receive the reflected radiation, for example the infrared, which will limit its warming up. According to a variant of this embodiment, the surface treatment is replaced by a reflective infrared filter which is arranged in front of or behind the second optical concentrator.
Dans tous les cas le concentrateur peut être réglé pour que l'intensité du rayonnement solaire qui est reçue par le capteur photovoltaïque reste sensiblement constante, même lorsque l'intensité lumineuse du soleil varie. Toutefois quand la quantité d'énergie de radiation solaire reçue par la cellule photovoltaïque diminuera, alors celle reçue par le capteur thermique augmentera de même valeur.  In all cases the concentrator can be set so that the intensity of solar radiation that is received by the photovoltaic sensor remains substantially constant, even when the light intensity of the sun varies. However, when the amount of solar radiation energy received by the photovoltaic cell decreases, then that received by the thermal sensor will increase by the same amount.
Dans un mode de réalisation envisagé, le capteur thermique est par exemple constitué par une conduite métallique parcourue par un fluide caloporteur, gazeux ou liquide, comme de l'air, de l'eau ou un mélange d'eau et de glycol. Le capteur thermique comporte par exemple une surface de cuivre recouverte d'une couche de titane colloïdal, ladite surface étant placée sous vide de manière à augmenter l'isolation thermique avec l'extérieur. Le capteur photovoltaïque est constitué par une pluralité de cellules photovoltaïques par exemple de type au silicium cristallin, organique, monocouche ou muiti couches, ou une combinaison de ces différents types connus, ou encore par tout nouveau type de cellule photovoltaïque en fonction des développements de nouvelles technologies de cellules. Le capteur photovoltaïque peut être équipé d'un système de refroidissement des cellules, comme un radiateur passif ou un radiateur à circulation de fluide. In one embodiment envisaged, the thermal sensor is for example constituted by a metallic pipe traversed by a coolant, gaseous or liquid, such as air, water or a mixture of water and glycol. The thermal sensor comprises for example a copper surface covered with a layer of colloidal titanium, said surface being placed under vacuum so as to increase the thermal insulation with the outside. The photovoltaic sensor is constituted by a plurality of photovoltaic cells for example of crystalline silicon type, organic, monolayer or muiti layers, or a combination of these different known types, or by any new type of photovoltaic cell according to new developments. cell technologies. The photovoltaic sensor can be equipped with a cell cooling system, such as a passive radiator or a radiator with fluid circulation.
Dans un mode particulier de réalisation le concentrateur solaire, y compris les deux capteurs, est monté sur un suiveur de soleil afin de recevoir un maximum de rayonnement direct du soleil pendant le déplacement horaire et saisonnier de ce dernier.  In a particular embodiment the solar concentrator, including both sensors, is mounted on a sun follower to receive a maximum of direct radiation from the sun during the seasonal and seasonal movement of the latter.
Dans un autre mode particulier de réalisation le concentrateur solaire ainsi que ses deux capteurs sont fixes par rapport au sol et utilisent au moins un héliostat pour rediriger le rayonnement solaire vers la première optique.  In another particular embodiment, the solar concentrator and its two sensors are fixed relative to the ground and use at least one heliostat to redirect the solar radiation to the first optics.
Dans un mode particulier de réalisation donnant la priorité à la production d'électricité, la position du miroir de répartition est variable et pilotée par un automatisme électromécanique de manière par exemple à maintenir constante la quantité d'énergie du rayonnement solaire reçue par les cellules photovoltaïques, à savoir que les variations d'intensité du rayonnement solaire qui se produisent au cours de la journée et au cours des saisons pourront être compensées par une variation inversement proportionnelle du taux de concentration appliqué aux cellules. Cette stabilité d'irradiation de la cellule aura pour avantage de minimiser les chocs thermiques au niveau des cellules et de minimiser les pics de puissance électrique à absorber par les composants électriques comme les onduleurs et les transformateurs.  In a particular embodiment giving priority to the production of electricity, the position of the distribution mirror is variable and controlled by an electromechanical automation so as for example to maintain constant the amount of energy of the solar radiation received by the photovoltaic cells that changes in the intensity of solar radiation during the day and during the seasons can be offset by an inversely proportional change in the concentration rate applied to the cells. This radiation stability of the cell will have the advantage of minimizing thermal shocks at the cells and minimizing the peaks of electrical power to be absorbed by the electrical components such as inverters and transformers.
Dans un autre exemple de réalisation donnant la priorité à la production maximale d'énergie calorifique, la position du miroir sera telle que la quasi totalité du rayonnement solaire concentré sera réfléchie à sa surface dudit miroir et dirigé vers le capteur thermique.  In another embodiment giving priority to the maximum production of heat energy, the position of the mirror will be such that almost all the concentrated solar radiation will be reflected on its surface of said mirror and directed towards the thermal sensor.
L'invention a également pour objet un dispositif constitué d'une pluralité de concentrateurs solaires selon l'invention, tous les concentrateurs étant alors reliés par une liaison mécanique et/ou électrique afin que tous les mouvements et déplacements des différentes parties des concentrateurs unitaires se fassent en même temps et à l'identique, notamment le déplacement de tous les miroirs. Bien entendu, dans ce cas il sera utile de relier également les connexions électriques et les réseaux de circulation de fluide caloporteur de tous les concentrateurs individuels. The invention also relates to a device consisting of a plurality of solar concentrators according to the invention, all the concentrators then being connected by a mechanical and / or electrical connection so that all the movements and displacements of the different parts of the unit concentrators are done at the same time and in the same way, in particular the displacement of all the mirrors. Of course, in this case it will be useful to also connect the electrical connections and heat transfer fluid networks of all individual concentrators.
DESCRIPTION DETAILLEE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
L'invention est maintenant décrite plus en détails à l'aide de la description des figures 1 à 2 indexées. The invention is now described in more detail with the aid of the description of the indexed FIGS. 1 to 2.
La figure 1 est un schéma de principe en coupe du dispositif selon l'invention.  Figure 1 is a block diagram in section of the device according to the invention.
La figure 2 illustre l'invention dans un mode particulier de réalisation où la première optique de concentration est une lentille de Fresnel linéaire et la deuxième optique de concentration une pluralité de lentilles de Fresnel linéaires dont les focales sont perpendiculaires à la première optique.  FIG. 2 illustrates the invention in a particular embodiment where the first focusing optics is a linear Fresnel lens and the second focusing optics a plurality of linear Fresnel lenses whose focal lengths are perpendicular to the first optic.
On se réfère à la figure 1 qui représente un schéma de principe du dispositif selon l'invention. Le concentrateur solaire est composé d'une première optique de concentration (2), d'une deuxième optique de concentration (3), d'un premier capteur (4) et d'un deuxième capteur (5). Le rayonnement solaire (1) est tout d'abord concentré par la première optique (2). Le rayonnement solaire concentré (6a, 6b) est ensuite soit réfléchi (7b) par un miroir (8) vers la première cible (4), soit traverse la deuxième optique de concentration (3) pour se concentrer (9) sur la deuxième cible (5). Dans un mode de réalisation particulier la deuxième optique de concentration (3) possède une surface plane traitée optiquement (10) pour qu'elle réfléchisse une partie du spectre solaire (7a), notamment le rayonnement infrarouge. Dans ce cas le rayonnement (9) qui traverse la deuxième optique (3) échauffera moins le second capteur (5) ce qui sera un avantage si ce capteur (5) est un capteur photovoltaïque. Le rayonnement infrarouge (7a) qui est réfléchi par la deuxième optique (3) poursuivra sa trajectoire jusqu'au premier capteur (4), ce qui sera un avantage si ce capteur (4) est un capteur thermique. Selon un aspect important de l'invention, le miroir (8) peut se déplacer de manière à faire varier la quantité de lumière (9) qui traverse la deuxième optique (3) jusqu'au deuxième capteur (5) et la quantité de lumière (7a,7b) qui est réfléchie vers le premier capteur (4). Cette répartition variable et éventuellement contrôlée de l'énergie solaire sur les deux capteurs (4,5) va par exemple entraîner une production d'électricité et de calories elle-même variable en fonction des besoins, ce qui est bien le but de l'invention. En particulier, si la priorité est donnée à la production d'électricité photovoltaïque, un automatisme (non illustré) permettra de maintenir à son maximum la quantité d'énergie (9) reçue par les cellules photovoltaïques (5) même pendant les variations de luminosité du soleil. Referring to Figure 1 which shows a block diagram of the device according to the invention. The solar concentrator is composed of a first concentration optics (2), a second concentration optics (3), a first sensor (4) and a second sensor (5). The solar radiation (1) is first concentrated by the first optics (2). The concentrated solar radiation (6a, 6b) is then either reflected (7b) by a mirror (8) to the first target (4), or passes through the second concentration optics (3) to focus (9) on the second target (5). In a particular embodiment, the second concentrating optic (3) has an optically treated plane surface (10) for reflecting a portion of the solar spectrum (7a), especially infrared radiation. In this case the radiation (9) which passes through the second optical (3) will heat less the second sensor (5) which will be an advantage if the sensor (5) is a photovoltaic sensor. The infrared radiation (7a) which is reflected by the second optics (3) will continue its trajectory to the first sensor (4), which will be an advantage if this sensor (4) is a thermal sensor. According to an important aspect of the invention, the mirror (8) can move in such a way as to vary the amount of light (9) passing through the second optics (3) to the second sensor (5) and the amount of light (7a, 7b) reflected to the first sensor (4). This variable and possibly controlled distribution of solar energy on the two sensors (4,5) will for example lead to a production of electricity and calories itself variable according to needs, which is the purpose of the invention. In particular, if the priority is given to the production of photovoltaic electricity, an automation (not shown) will keep to a maximum the amount of energy (9) received by the photovoltaic cells (5) even during the brightness variations of the sun.
La figure 2 illustre un exemple de concentrateur solaire selon l'invention. La première optique de concentration (2) est une lentille de Fresnel linéaire dont la focale rectiligne est à l'horizontal. La deuxième optique de concentration (3) est une pluralité de lentilles de Fresnel linéaires dont les focales rectilignes sont à la verticale. Lesdites lentilles de Fresnel (3) sont recouvertes sur leur face plane d'un film (10) qui réfléchit le rayonnement infrarouge (7a). Le premier capteur (4) est un capteur thermique linéaire placé entre la première optique (2) et la deuxième optique (3). Le deuxième capteur (5) est un capteur photovoltaïque placé au foyer de la deuxième optique de concentration (3). Dans cet exemple la position relative de la première optique (2) et de la deuxième optique (3) est telle que les focales de ces deux optiques (2,3) se situent au même endroit, dans cet exemple c'est à cet endroit qu'est positionné le deuxième capteur (5). Le faisceau concentré (6a,6b) par la première lentille de Fresnel (2) possède une focale linéaire mais ce faisceau se transforme à son passage au travers de la pluralité des lentilles de Fresnel de la deuxième optique (3) en une pluralité de faisceaux (9) dont les focales sont ponctuelles et éclairent individuellement une pluralité de cellules photovoltaïques (lla,llb.... llh). Le rayonnement infrarouge (7a) qui est réfléchi par la surface traitée (10) de la deuxième optique (3) est dirigé et concentré linéairement le long du capteur thermique (4). Un miroir plan (8) dont la surface réfléchissante est tournée vers le capteur thermique (4) est positionné devant la deuxième optique (3) de manière à intercepter une partie (6b) du faisceau concentré de la première optique (2) et à la diriger (7b) également vers le capteur thermique (4). Cette partie (6b) du rayonnement qui est interceptée par le miroir (8) est variable en fonction de la position dudit miroir (8). La position dudit miroir (8) peut être pilotée par un automatisme électromécanique (non illustré) de manière à maintenir constante la quantité d'énergie du rayonnement solaire (9) reçue par les cellules photovoltaïques (lla,...llh), à savoir que les variations d'intensité du rayonnement solaire (1) qui se produisent au cours de la journée et au cours des saisons pourront être compensées par une variation inversement proportionnelle de la quantité de lumière (9) qui traversera la deuxième optique (3). FIG. 2 illustrates an example of a solar concentrator according to the invention. The first concentration optic (2) is a linear Fresnel lens whose straight focal length is horizontal. The second concentration optic (3) is a plurality of linear Fresnel lenses whose straight focal lengths are vertical. Said Fresnel lenses (3) are covered on their flat face with a film (10) which reflects infrared radiation (7a). The first sensor (4) is a linear thermal sensor placed between the first optics (2) and the second optics (3). The second sensor (5) is a photovoltaic sensor placed at the focus of the second optical concentrator (3). In this example, the relative position of the first optics (2) and the second optics (3) is such that the focal lengths of these two optics (2, 3) are in the same place, in this example it is at this point that is positioned the second sensor (5). The concentrated beam (6a, 6b) by the first Fresnel lens (2) has a linear focal length but this beam is transformed as it passes through the plurality of Fresnel lenses of the second optics (3) into a plurality of beams (9) whose focal lengths are punctual and individually illuminate a plurality of photovoltaic cells (lla, llb .... llh). The infrared radiation (7a) which is reflected by the treated surface (10) of the second optics (3) is directed and concentrated linearly along the thermal sensor (4). A plane mirror (8) whose reflecting surface is turned towards the thermal sensor (4) is positioned in front of the second optic (3) so as to intercept a portion (6b) of the concentrated beam of the first optic (2) and at the direct (7b) also towards the thermal sensor (4). This part (6b) radiation that is intercepted by the mirror (8) is variable depending on the position of said mirror (8). The position of said mirror (8) can be controlled by an electromechanical automatism (not shown) so as to keep constant the amount of energy of the solar radiation (9) received by the photovoltaic cells (11a, ... llh), namely that the variations in intensity of the solar radiation (1) that occur during the day and during the seasons can be compensated by an inversely proportional variation in the amount of light (9) that will pass through the second optics (3).
On décrit maintenant un exemple concret de réalisation (figure 2)  A concrete example of embodiment is now described (FIG. 2)
Un dispositif selon l'invention est constitué d'une première optique de concentration (2) en forme de lentille de Fresnel carrée en poly méthacrylate de méthyle transparent de 100 cm de côté et de 4 mm d'épaisseur. Cette première lentille de Fresnel (2) est de type focale linéaire et sa longueur focale est de 100 cm. La lentille de Fresnel (2) reçoit, perpendiculairement à sa surface, la lumière solaire (1) d'un héliostat qui l'éclairé en totalité. La deuxième optique de concentration (3) est composée d'une juxtaposition de huit lentilles de Fresnel identiques de 40 x 12 cm, à focales linéaires, et dont les longueurs focales valent 40 cm. Les focales de ces huit lentilles sont toutes parallèles entre elles et perpendiculaires à la focale de la première lentille de Fresnel (2). Cette deuxième optique de concentration (3) est placée à 60 cm et parallèlement à la première lentille de Fresnel (2) de sorte que les zones focales de toutes les lentilles se rejoignent au même endroit à 40 cm des huit lentilles de Fresnel (3). A cet endroit est disposé un module photovoltaïque (5) composé de huit cellules photovoltaïques (lla,...llh) carrées en silicium cristallin de 2 cm de côtés, de sorte que chaque cellule reçoive le rayonnement solaire concentré (9) par la première (2) et la deuxième (3) optiques de concentration. Un capteur thermique linéaire (4) est constitué d'un tube en aluminium anodisé noir placé au centre d'un tube en verre borosilicaté sous vide. L'axe longitudinal de ce capteur thermique est placé parallèlement à la focale linéaire de la première lentille de Fresnel (2) et à 40 cm de celle-ci entre les deux optiques de concentration (2,3). Ce capteur thermique est parcouru par un liquide caloporteur fait d'un mélange d'eau et de glycol dans une proportion de 80/20. Un miroir en verre (8) de 100 x 40 cm et de 4 mm d'épaisseur est positionné parallèlement aux surfaces des lentilles de Fresnei (2,3), sa face réfléchissante tournée vers la première lentille de Fresnei (2) et placé devant l'alignement des huit lentilles de Fresnei (3) de sorte que ce miroir (8) puisse intercepter et réfléchir une partie plus ou moins importante du rayonnement concentré par la première lentille (2) en fonction de sa position devant la deuxième optique (3). Les rayons réfléchis (7b) par le miroir (8) se concentrent alors linéairement sur le capteur thermique (4) alors que les rayons (9) qui traversent les huit lentilles de Fresnei (3) se concentrent ponctuellement sur les huit cellules photovoltaïques (lla,..llh). Afin de réduire réchauffement des cellules photovoltaïques (lla,..llh) un filtre réfléchissant les infrarouges (10) de 100 x 40 cm est posé à la surface de la deuxième optique (3) de sorte que le rayonnement infrarouge (7a) soit réfléchi vers le capteur thermique (4). A device according to the invention consists of a first concentration optic (2) in the form of a square Fresnel lens in transparent poly methyl methacrylate of 100 cm square and 4 mm thick. This first Fresnel lens (2) is of linear focal length and its focal length is 100 cm. The Fresnel lens (2) receives, perpendicular to its surface, the sunlight (1) of a heliostat which illuminates it in its entirety. The second concentrating optics (3) is composed of a juxtaposition of eight identical 40 x 12 cm Fresnel lenses with linear focal lengths and focal lengths of 40 cm. The focal lengths of these eight lenses are all parallel to each other and perpendicular to the focal length of the first Fresnel lens (2). This second concentration optic (3) is placed at 60 cm and parallel to the first Fresnel lens (2) so that the focal areas of all the lenses meet at the same location at 40 cm from the eight Fresnel lenses (3) . At this location is arranged a photovoltaic module (5) consisting of eight photovoltaic cells (11a, 11h) square crystalline silicon 2 cm sides, so that each cell receives the concentrated solar radiation (9) by the first (2) and the second (3) optical concentration. A linear thermal sensor (4) consists of a black anodized aluminum tube placed in the center of a vacuum borosilicate glass tube. The longitudinal axis of this thermal sensor is placed parallel to the linear focal length of the first Fresnel lens (2) and 40 cm from it between the two focusing optics (2,3). This thermal sensor is traversed by a coolant made of a mixture of water and glycol in a proportion of 80/20. A glass mirror (8) of 100 x 40 cm and 4 mm thick is positioned parallel to the surfaces of the Fresnei lenses (2,3), its reflecting surface facing the first Fresnei lens (2) and placed in front of the alignment of the eight Fresnei lenses (3) so that this mirror (8) can intercept and reflect a more or less important part of the concentrated radiation by the first lens (2) according to its position in front of the second optics (3). The reflected rays (7b) by the mirror (8) are then linearly concentrated on the thermal sensor (4) while the rays (9) passing through the eight Fresnei lenses (3) focus punctually on the eight photovoltaic cells (lla .. llh). In order to reduce the heating of the photovoltaic cells (11a, 11b), an infrared reflecting filter (10) of 100 x 40 cm is placed on the surface of the second optics (3) so that the infrared radiation (7a) is reflected. towards the thermal sensor (4).
Le concentrateur est réglé pour que sous une intensité solaire de 1000 W/m2 chaque cellule photovoltaïque (lla,...llh) reçoit un rayonnement solaire concentré par 50, ce qui correspond à une position du miroir (8) recouvrant 4/5ème de la surface de la deuxième optique (3) et donc réfléchissant vers le capteur thermique 4/5ème de l'énergie solaire reçue par la première lentille de Fresnei (2). 1/5 de l'énergie solaire seulement éclaire les huit cellules photovoltaïques, soit 200 W divisés par huit ce qui équivaut à 25W par cellule. Le taux de conversion des cellules étant de 20%, 5W seront produits par chaque cellule de 4 cm2 de surface alors que cette puissance de 5W est produite par une cellule de 220 cm2 lorsque celle-ci est hors concentration solaire, ce qui équivaut bien à une concentration d'environ 50 fois (220 / 4).  The concentrator is set so that under a solar intensity of 1000 W / m2 each photovoltaic cell (lla, ... llh) receives concentrated solar radiation by 50, which corresponds to a mirror position (8) covering 4 / 5th of the surface of the second optics (3) and thus reflecting towards the thermal sensor 4 / 5th of the solar energy received by the first Fresnei lens (2). 1/5 of the solar energy alone illuminates the eight photovoltaic cells, ie 200 W divided by eight which equals 25W per cell. Since the conversion rate of the cells is 20%, 5W will be produced by each cell of 4 cm2 of surface whereas this power of 5W is produced by a cell of 220 cm2 when this one is out of concentration solar, which is equivalent well to a concentration of about 50 times (220/4).
Lorsque la luminosité du soleil diminue progressivement de 1000W/m2 à 200W/m2 une commande est transmise à un moteur pour qu'il déplace le miroir (8) afin qu'il découvre progressivement la deuxième optique (3) et laisse passer progressivement de l/5ème à 5/5ème du rayonnement solaire (1). Ainsi pour une diminution de la luminosité solaire par un facteur 5 les cellules photovoltaïques recevront cinq fois plus de lumière concentrée ce qui aura pour résultat de maintenir les cellules photovoltaïques (lla,...,llh) sous une même densité d'irradiation donc une même production d'électricité. Par ailleurs toute l'énergie solaire (1) non transmise aux cellules photovoltaïques (lla,...llh) sera absorbée par le capteur thermique (4), y compris le rayonnement infrarouge (7a) réfléchi par le filtre (10), ce qui va permettre un haut rendement de conversion de l'énergie solaire suivant ces deux modes de conversion. When the brightness of the sun gradually decreases from 1000W / m2 to 200W / m2 a command is transmitted to a motor so that it moves the mirror (8) so that it gradually discovers the second optics (3) and passes gradually from the / 5th to 5th of the solar radiation (1). Thus, for a decrease in the solar brightness by a factor 5, the photovoltaic cells will receive five times more concentrated light which will result in maintaining the photovoltaic cells (11a,..., 11h) under the same irradiation density, thus same power generation. In addition all solar energy (1) no transmitted to the photovoltaic cells (lla, ... llh) will be absorbed by the thermal sensor (4), including the infrared radiation (7a) reflected by the filter (10), which will allow a high conversion efficiency of the solar energy following these two modes of conversion.
En outre, si la priorité, comme c'est le cas dans cet exemple de réalisation, aura été donnée à la production d'électricité, les cellules photovoltaïques (lla,...llh) auront été exploitées au maximum de leurs rentabilités car elles auront fonctionné au maximum de leurs possibilités de production (maximum de concentration solaire pendant un maximum de temps).  In addition, if the priority, as is the case in this embodiment, has been given to the production of electricity, photovoltaic cells (lla, ... llh) have been exploited to the maximum of their profitability because they will have worked to the maximum of their production possibilities (maximum solar concentration for a maximum of time).
Bien entendu il serait aisément possible de modifier la priorité de production de l'énergie électrique par rapport à l'énergie calorifique simplement en déplaçant davantage le miroir (8) devant la deuxième optique de concentration (3).  Of course, it would be easy to modify the production priority of the electrical energy with respect to the heat energy simply by further moving the mirror (8) in front of the second concentration optic (3).
AVANTAGES DE L'INVENTION ADVANTAGES OF THE INVENTION
En définitive l'invention répond aux buts fixés et permet bien de capturer, concentrer, et transformer l'énergie solaire en électricité et en calories, tout en contrôlant la quantité d'énergie solaire qui sera transformée en électricité et celle qui sera transformée en énergie calorifique, cette répartition pouvant être faite en temps réel et en fonction notamment des conditions de luminosité ambiante.  Ultimately the invention meets the goals and allows to capture, focus, and transform solar energy into electricity and calories, while controlling the amount of solar energy that will be converted into electricity and the amount that will be converted into energy. calorific, this distribution can be made in real time and depending on the ambient light conditions.
Cette répartition entre les deux modes de conversion de l'énergie solaire This split between the two modes of solar energy conversion
(électrique et calorifique) est rendue possible grâce à la position en temps réel d'un répartiteur d'énergie, par exemple un miroir (8), cette position tenant compte des conditions de luminosité ambiantes (soleil clair, soleil voilé, ...), ce qui permet bien de favoriser une forme d'énergie ou une autre en fonction des besoins et/ou en fonction des performances et rentabilités souhaitées pour un capteur ou pour l'autre. (Electric and heat) is made possible by the real-time position of a power distributor, for example a mirror (8), this position taking into account the ambient light conditions (clear sun, veiled sun, etc.). ), which makes it possible to favor one form of energy or another according to the needs and / or according to the desired performances and returns for one sensor or the other.

Claims

REVENDICATIONS
1 - Concentrateur solaire comportant d'une part une première (2) et une deuxième (3) optique de concentration, caractérisé en ce qu'il comporte d'autre part au moins un premier (4) et un deuxième (5) capteur solaire ayant des modes de conversion de l'énergie solaire différents, lesdites optiques de concentration (2,3) étant agencées pour concentrer le rayonnement solaire incident (1) vers lesdits premier et second capteurs (4,5) solaires, et en ce que le concentrateur solaire comporte des moyens de contrôle (8,10) de la répartition du rayonnement solaire (1) entre lesdits premier et second capteurs solaires (4,5). 1 - Solar concentrator comprising on the one hand a first (2) and a second (3) optical concentration, characterized in that it comprises on the other hand at least a first (4) and a second (5) solar collector having different solar energy conversion modes, said concentration optics (2,3) being arranged to focus the incident solar radiation (1) to said first and second solar sensors (4,5), and that the solar concentrator comprises means (8, 10) for controlling the distribution of solar radiation (1) between said first and second solar collectors (4, 5).
2 - Concentrateur solaire selon la revendication 1, caractérisé en ce que lesdits moyens de contrôle (8,10) de la répartition du rayonnement solaire (1) sont automatisés et reçoivent en entrée un signal représentatif de la priorité à allouer à un mode de conversion d'énergie par rapport à un autre mode de conversion d'énergie, ledit signal étant utilisé pour piloter la répartition du rayonnement solaire (1) entre les deux capteurs différents (4,5) de conversion énergétique. 2 - solar concentrator according to claim 1, characterized in that said control means (8,10) of the distribution of solar radiation (1) are automated and receive as input a signal representative of the priority to allocate to a conversion mode of energy compared to another mode of energy conversion, said signal being used to control the distribution of solar radiation (1) between the two different sensors (4,5) of energy conversion.
3 - Concentrateur selon la revendication 2, caractérisé en ce que ledit signal est une mesure en temps réel de la luminosité ambiante, et en ce que le pilotage de la répartition du rayonnement entre les différents capteurs (4,5) se fait en continu ou par intervalles de temps courts, de l'ordre de quelques secondes, en fonction de la luminosité ambiante. 3 - Concentrator according to claim 2, characterized in that said signal is a real-time measurement of the ambient brightness, and in that the control of the distribution of radiation between the various sensors (4,5) is continuous or in short time intervals, of the order of a few seconds, depending on the ambient brightness.
4 - Concentrateur solaire selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits capteurs (4,5) comportent au moins une conversion (5) de l'énergie solaire en énergie électrique, et une conversion (4) de l'énergie solaire en énergie calorifique. 4 - solar concentrator according to any one of the preceding claims, characterized in that said sensors (4,5) comprise at least one conversion (5) of solar energy into electrical energy, and a conversion (4) of the solar energy into heat energy.
5 - Concentrateur selon la revendication 4, caractérisé en ce que les capteurs comportent d'une part un capteur photovoltaïque (5) vers lequel est concentrée tout ou partie du rayonnement solaire incident (1), et d'autre part un capteur thermique (4) vers lequel est dirigée la part du rayonnement solaire incident qui n'est pas dirigée vers le capteur photovoltaïque (5). 5 - Concentrator according to claim 4, characterized in that the sensors comprise firstly a photovoltaic sensor (5) to which is concentrated all or part of the incident solar radiation (1), and secondly a thermal sensor (4). to which is directed the part of the incident solar radiation which is not directed towards the photovoltaic sensor (5).
6 - Concentrateur selon la revendication 4 ou 5, caractérisé en ce que le capteur photovoltaïque (5) est positionné entre la deuxième optique de concentration (3) et la zone focale de celle-ci. 6 - Concentrator according to claim 4 or 5, characterized in that the photovoltaic sensor (5) is positioned between the second optical concentration (3) and the focal zone thereof.
7 - Concentrateur selon la revendication 4 ou 5, caractérisé en ce que le capteur thermique (4) est positionné entre la première optique de concentration (2) et la deuxième optique de concentration (3). 7 - Concentrator according to claim 4 or 5, characterized in that the thermal sensor (4) is positioned between the first optical concentration (2) and the second optical concentration (3).
8 - Concentrateur selon l'une quelconque des revendications 4 à 7, caractérisé en ce que les moyens de contrôle de la répartition du rayonnement solaire (1) entre lesdits capteurs (4,5) est un miroir plan (8) dont la face réfléchissante est tournée vers le premier capteur (4) et dont la position par rapport aux deux optiques de concentration (2,3) est variable de façon à entraîner la variation de la quantité du rayonnement solaire concentrée (9) qui éclaire le capteur photovoltaïque (5) et la variation de la quantité du rayonnement solaire concentrée (7a,7b) qui éclaire le capteur thermique (4). 8 - Concentrator according to any one of claims 4 to 7, characterized in that the means for controlling the distribution of solar radiation (1) between said sensors (4,5) is a plane mirror (8) whose reflective face is turned towards the first sensor (4) and whose position relative to the two focusing optics (2, 3) is variable so as to cause the variation of the amount of the concentrated solar radiation (9) which illuminates the photovoltaic sensor (5). ) and the variation of the amount of concentrated solar radiation (7a, 7b) which illuminates the thermal sensor (4).
9 - Concentrateur selon l'une quelconque des revendications 4 à 8, caractérisé en ce qu'un filtre optique (10) est positionné devant la deuxième optique de concentration (3), ledit filtre optique (10) ayant la propriété de réfléchir une partie du spectre solaire, de préférence le rayonnement infrarouge. 9 - Concentrator according to any one of claims 4 to 8, characterized in that an optical filter (10) is positioned in front of the second optical concentration (3), said optical filter (10) having the property of reflecting a part of the solar spectrum, preferably infrared radiation.
10 - Concentrateur solaire selon une des revendications 4 à 9, caractérisé en ce qu'il est réglé pour que l'intensité du rayonnement solaire qui est reçue par le capteur photovoltaïque (5) reste sensiblement constante, même lorsque l'intensité lumineuse du soleil varie. 10 - solar concentrator according to one of claims 4 to 9, characterized in that it is set so that the intensity of solar radiation that is received by the Photovoltaic sensor (5) remains substantially constant even when the light intensity of the sun varies.
11 - Concentrateur solaire selon l'une quelconque des revendications précédentes, caractérisé en ce que la première optique (2) et/ou la deuxième optique de concentration (3) comporte un des éléments suivants ou une combinaison des éléments suivants: une lentille de Fresnel dont la focale est ponctuelle ou rectiligne, un miroir parabolique ou cylindro-parabolique, au moins un héliostat. 11 - solar concentrator according to any one of the preceding claims, characterized in that the first optical (2) and / or the second optical concentration (3) comprises one of the following elements or a combination of the following elements: a Fresnel lens whose focal length is punctual or rectilinear, a parabolic or cylindro-parabolic mirror, at least one heliostat.
12 - Concentrateur solaire selon la revendication 11, caractérisé en ce que la première optique de concentration (2) et la deuxième optique de concentration (3) comportent des lentilles de Fresnel dont les focales sont linéaires et perpendiculaires entres elles de sorte que le rayonnement solaire incident (1) qui traverse ces deux optiques (2,3) se concentre vers le second capteur (5) sous la forme approximative d'un carré, d'un disque ou d'un point. 12 - solar concentrator according to claim 11, characterized in that the first concentrating optics (2) and the second focusing optics (3) comprise Fresnel lenses whose focal lengths are linear and perpendicular to one another so that the solar radiation incident (1) which passes through these two optics (2, 3) concentrates towards the second sensor (5) in the approximate form of a square, a disk or a point.
13 - Concentrateur solaire selon l'une quelconque des revendications 4 à 12, caractérisé en ce que les deux optiques de concentration (2,3), le capteur photovoltaïque (5) et le capteur thermique (4) sont fixes par rapport au sol et en ce que le concentrateur solaire comporte au moins un héliostat pour rediriger la rayonnement solaire vers la première optique de concentration (2). 13 - solar concentrator according to any one of claims 4 to 12, characterized in that the two concentrating optics (2,3), the photovoltaic sensor (5) and the thermal sensor (4) are fixed relative to the ground and in that the solar concentrator comprises at least one heliostat for redirecting the solar radiation towards the first concentration optic (2).
14 - Concentrateur solaire selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le concentrateur solaire est monté sur un suiveur de soleil de manière à recevoir un maximum de rayonnement direct du soleil pendant le déplacement horaire et saisonnier de ce dernier. 14 - solar concentrator according to any one of claims 1 to 12, characterized in that the solar concentrator is mounted on a sun follower so as to receive a maximum of direct radiation from the sun during the seasonal and seasonal movement of the latter.
15 - Concentrateur solaire selon l'une des revendications 5 à 13, caractérisé en ce que le capteur photovoltaïque (5) est constitué par une pluralité de cellules photovoltaïques (lla,...llh) de type silicium cristallin, organique, monocouche ou multicouches, ou une combinaison de ces différents types. 15 - solar concentrator according to one of claims 5 to 13, characterized in that the photovoltaic sensor (5) is constituted by a plurality of photovoltaic cells (lla, ... llh) crystalline silicon type, organic, monolayer or multilayer , or a combination of these different types.
16 - Concentrateur solaire selon l'une des revendications 5 à 15, caractérisé en ce que le capteur thermique (4) est une conduite qui est parcourue par un fluide caloporteur gazeux ou liquide. 16 - solar concentrator according to one of claims 5 to 15, characterized in that the thermal sensor (4) is a pipe which is traversed by a gaseous or liquid heat transfer fluid.
17. Concentrateur solaire selon la revendication 16, caractérisé en ce que le capteur thermique (4) comporte une surface de cuivre recouverte d'une couche de titane colloïdal, ladite surface étant placée sous vide de manière à augmenter l'isolation thermique avec l'extérieur. 17. Solar concentrator according to claim 16, characterized in that the thermal sensor (4) comprises a copper surface covered with a layer of colloidal titanium, said surface being placed under vacuum so as to increase the thermal insulation with the outside.
18 - Dispositif comprenant une pluralité de concentrateurs solaires selon l'une des revendications précédentes, caractérisé en ce que toutes les parties mobiles (8) sont reliées mécaniquement entre elles de sorte que tous leurs déplacements se font en même temps et à l'identique. 18 - Device comprising a plurality of solar concentrators according to one of the preceding claims, characterized in that all the movable parts (8) are mechanically connected to each other so that all their movements are at the same time and identically.
PCT/FR2013/000107 2012-04-21 2013-04-18 Device for controlling energy conversion in hybrid thermal and photovoltaic solar concentrators WO2013156695A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1201184 2012-04-21
FR1201184A FR2989830B1 (en) 2012-04-21 2012-04-21 DEVICE FOR CONTROLLING ENERGY CONVERSIONS IN THERMAL AND PHOTOVOLTAIC MIXED SOLAR CONCENTRATORS

Publications (1)

Publication Number Publication Date
WO2013156695A1 true WO2013156695A1 (en) 2013-10-24

Family

ID=46889094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/000107 WO2013156695A1 (en) 2012-04-21 2013-04-18 Device for controlling energy conversion in hybrid thermal and photovoltaic solar concentrators

Country Status (2)

Country Link
FR (1) FR2989830B1 (en)
WO (1) WO2013156695A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541596A (en) * 2021-05-26 2021-10-22 南京师范大学 Active regulation and control method and device for solar full-spectrum frequency division energy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046977A1 (en) * 2003-09-02 2005-03-03 Eli Shifman Solar energy utilization unit and solar energy utilization system
WO2010017422A2 (en) * 2008-08-06 2010-02-11 Brightphase Energy, Inc. Solar energy conversion
WO2010026437A2 (en) * 2007-08-07 2010-03-11 Carl B Andrews Focusing collector optical and energy system
WO2010138606A2 (en) * 2009-05-26 2010-12-02 Cogenra Solar, Inc. Concentrating solar photovoltaic-thermal system
WO2012032431A2 (en) * 2010-09-06 2012-03-15 Koninklijke Philips Electronics N.V. Arrangement for light energy conversion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046977A1 (en) * 2003-09-02 2005-03-03 Eli Shifman Solar energy utilization unit and solar energy utilization system
WO2010026437A2 (en) * 2007-08-07 2010-03-11 Carl B Andrews Focusing collector optical and energy system
WO2010017422A2 (en) * 2008-08-06 2010-02-11 Brightphase Energy, Inc. Solar energy conversion
WO2010138606A2 (en) * 2009-05-26 2010-12-02 Cogenra Solar, Inc. Concentrating solar photovoltaic-thermal system
WO2012032431A2 (en) * 2010-09-06 2012-03-15 Koninklijke Philips Electronics N.V. Arrangement for light energy conversion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541596A (en) * 2021-05-26 2021-10-22 南京师范大学 Active regulation and control method and device for solar full-spectrum frequency division energy
CN113541596B (en) * 2021-05-26 2022-09-02 南京师范大学 Active regulation and control method and device for solar full-spectrum frequency division energy

Also Published As

Publication number Publication date
FR2989830A1 (en) 2013-10-25
FR2989830B1 (en) 2015-12-18

Similar Documents

Publication Publication Date Title
CA2590165C (en) Solar energy collection system
US3991741A (en) Roof-lens solar collector
US4427838A (en) Direct and diffused solar radiation collector
US6831221B2 (en) System and method for power generation
CH641269A5 (en) CONCENTRATION DEVICE FOR CAPTURING AND FOCUSING SOLAR ENERGY AND CONVERTER APPARATUS COMPRISING THIS DEVICE.
JP2008546195A (en) Sunlight concentration device
US20100154866A1 (en) Hybrid solar power system
JPWO2009057552A1 (en) Sunlight collection system
EP3029744B1 (en) Solar module comprising holographic reflecting concentrating optics
TW200921920A (en) Solar cell module
EP3382764B1 (en) Light-concentrating solar system
US10153726B2 (en) Non-concentrated photovoltaic and concentrated solar thermal hybrid devices and methods for solar energy collection
WO2013156695A1 (en) Device for controlling energy conversion in hybrid thermal and photovoltaic solar concentrators
CN204794873U (en) Thermoelectric cogeneration system of high spotlight photovoltaic power generation and component structure thereof
WO2013098489A1 (en) Device for controlling the conversion of energy in thermal and photovoltaic hybrid solar concentrators
US7718887B2 (en) Apparatus and method for harnessing heat energy
FR2951251A1 (en) Hybrid energy producing system, has thermal solar energy system provided with circulation pipe, and photovoltaic system provided with photovoltaic cell that is arranged in convergence place, of complementary radiation
FR3040471A1 (en) SOLAR CONCENTRATOR WITH THREE DIMENSIONAL ABSORBER
WO2014019488A1 (en) Wavelength-splitting-type solar energy comprehensive utilization system
WO2013110997A1 (en) Equipment and systems for concentrating/recovering solar energy, and industrial and domestic applications
RU201526U1 (en) Holographic film based on prismacons
KR101132567B1 (en) Solar electricity concentrating apparatus
KR101217247B1 (en) condensing type solar cell
JP2020510390A (en) Energy storage type solar energy device
WO2014116498A1 (en) Solar waveguide concentrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13727241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13727241

Country of ref document: EP

Kind code of ref document: A1