WO2011064437A2 - Viral vectors and methods used in the preparation of gdnf - Google Patents

Viral vectors and methods used in the preparation of gdnf Download PDF

Info

Publication number
WO2011064437A2
WO2011064437A2 PCT/ES2010/070778 ES2010070778W WO2011064437A2 WO 2011064437 A2 WO2011064437 A2 WO 2011064437A2 ES 2010070778 W ES2010070778 W ES 2010070778W WO 2011064437 A2 WO2011064437 A2 WO 2011064437A2
Authority
WO
WIPO (PCT)
Prior art keywords
gdnf
protein
hgdnf
cells
alphavirus
Prior art date
Application number
PCT/ES2010/070778
Other languages
Spanish (es)
French (fr)
Other versions
WO2011064437A3 (en
Inventor
Eduardo Ansorena Artieda
María Soledad AYMERICH SOLER
María José BLANCO PRIETO
Erkuden Casales Zoco
Elisa Garbayo Atienza
María Carmen MOLINA SAMPER
Cristian Smerdou Picazo
Original Assignee
Proyecto De Biomedicina Cima, S.L.
Instituto Científico Y Tecnológico De Navarra, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proyecto De Biomedicina Cima, S.L., Instituto Científico Y Tecnológico De Navarra, S.A. filed Critical Proyecto De Biomedicina Cima, S.L.
Publication of WO2011064437A2 publication Critical patent/WO2011064437A2/en
Publication of WO2011064437A3 publication Critical patent/WO2011064437A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36111Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
    • C12N2770/36141Use of virus, viral particle or viral elements as a vector
    • C12N2770/36143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to genetic engineering and, in particular, to methods for the production of human glia-derived neurotrophic factor (GDNF) and alphavirus expression vectors.
  • GDNF glia-derived neurotrophic factor
  • the glia-derived neurotrophic factor was first described by Lin et al. 1993, as a potent neurotrophic factor for dopaminergic neurons.
  • the gene for human GDNF encodes a mature protein of 134 amino acids with a molecular weight of 15 kDa that is forming a homodimer (30 kDa) linked by disulfide bridges. Based on the amino acid sequence, it has a pl of 9.26, the pH at which the protein has an equal number of positive charges and negative charges.
  • GDNF is a highly glycosylated protein, its apparent molecular mass in an SDS-PAGE gel under reducing conditions varies between 18 and 22 kDa (Lin et al., 1993).
  • N-glycosylations represent approximately 20-30% of the molecular mass of GDNF.
  • GDNF is a protein with great therapeutic potential for the treatment of Parkinson's disease, from English "Parkinson's disease” (PD), amyotrophic lateral sclerosis, spinal cord injuries, peripheral nerve injury, including motor nerves such as the facial nerve, sensory nerves and mixed motors such as the sciatic nerve, eye diseases such as glaucoma, or induced retinal ganglion cell degeneration after optic nerve transection and other models of retinal degeneration.
  • PD Parkinson's disease
  • amyotrophic lateral sclerosis spinal cord injuries
  • peripheral nerve injury including motor nerves such as the facial nerve, sensory nerves and mixed motors such as the sciatic nerve, eye diseases such as glaucoma, or induced retinal ganglion cell degeneration after optic nerve transection and other models of retinal degeneration.
  • GDNF plays a key role in the negative regulation of drugs of abuse, including psychostimulants, morphine and
  • Glycosylation is one of the most common post-translational modifications of proteins that can affect their properties necessary for therapeutic application (Walsh and Jefferis, 2006).
  • the presence and nature of an oligosaccharide chain can affect folding, stability, diffusion, immunity, ligand binding, biological, pharmacodynamic and pharmacokinetic half-life, as well as the functional activity of glycoproteins. Glycosylation seems to play an important role in the stability of GDNF.
  • glycosylated GDNF glycosylated GDNF
  • bacterial systems lack the ability to glycosylate proteins
  • the expression of glycosylated GDNF will require the use of eukaryotic cells.
  • mammalian cells are the best candidates, as they will be able to introduce the same glycosylation pattern present in endogenous GDNF.
  • Mammalian cells are the ideal expression system for producing structurally complex proteins, since they offer the highest degree of fidelity of the product necessary for a therapeutic agent (Walsh and Jefferis, 2006).
  • IGFBP-5 and IGFBP-7 are insulin-like growth factor binding proteins with a molecular weight of 30 kDa and a theoretical pl of 8, 6 and 8, 3, respectively. These characteristics are very similar to those of the hGDNF dimer, resulting in an overlap of their corresponding peaks in the chromatogram, thus making the isolation of hGDNF difficult.
  • An objective of the present invention is to provide methods and means that allow the preparation of glycosylated hGDNF in optimal yields.
  • An objective of the present invention is to provide methods and means that allow the preparation of glycosylated hGDNF in an industrial scale manner.
  • An object of the present invention is to provide methods and means that allow the preparation of glycosylated hGDNF directly in a pure form.
  • An objective of the present invention is to provide methods and means that allow the preparation of glycosylated hGDNF having eliminated possible contaminating proteins.
  • COX-2 also known as cyclooxygenase 2
  • COX-2 is the key enzyme in the biosynthesis of prostaglandins. It is a cytoplasmic protein.
  • Lundstrom (Methods in Molecular Medicine, vol. 76: Viral Vectors for Gene Therapy: Methods and Protocols, Edited by: CA Machida ⁇ Humana Press Inc., Toto a, NJ) also provides specific examples of SFV vectors comprising a nucleotide sequence encoding polypeptides recombinants, such as the pSFV-5-HT3 mouse serotonin receptor vector or pSFV-CAP-hNKIRhi s, where the complete capsid gene is fused to the human neuroquinine-1 receptor gene (hNKl-R).
  • hNKl-R human neuroquinine-1 receptor gene
  • EP1386926A1 (Bioxtal) describes an alphavirus vector comprising a nucleic acid molecule or a construct comprising the sequence of a recombinant alphavirus genome, said recombinant alphavirus genome (i) being deficient in at least one gene encoding structural proteins of alphavirus, (ii) comprising coding sequences and non-structural protein regulatory sequences of the alphavirus, and (iii) comprising a nucleic acid sequence encoding the polypeptide.
  • WO09 / 089040 describes methods for expressing proteins in the axons of mammalian neurons.
  • the inventors have devised a method for the expression and purification of glycosylated hGDNF that prevents the production of contaminating proteins. This method allows the production of glycosylated hGDNF with superior yields and purity. The method is also suitable for the industrial scale production of hGDNF.
  • the present invention relates to a method for the production of a recombinant human GDNF protein, or a functionally equivalent variant thereof, comprising:
  • eukaryotic cells comprising an alphavirus expression vector, said vector comprising the nucleic acids of i) a 5 'sequence capable of directing the replication of the alphavirus; ii) a sequence encoding non-structural proteins capable of directing the replication of alphaviral RNA; iii) a subgenomic promoter of the alphavirus; iv) a sequence encoding a recombinant human GDNF protein, or a functionally equivalent variant thereof, operatively linked to the subgenomic promoter that directs protein expression in eukaryotic cells; v) a 3 'sequence capable of directing the replication of the alphavirus;
  • the present invention also relates to an alphavirus expression vector as defined above, an alphaviral particle comprising the nucleic acids defined above in the form of RNA, and a eukaryotic cell comprising an alphavirus vector according to any of the embodiments presented in this document.
  • the present invention also relates to fusion proteins comprising the SFV capsid protein bound to human GDNF, or a functionally equivalent variant thereof; or comprising at least the first 34 amino acids of the SFV capsid protein bound to a self-cleavage protease, the latter also bound to human GDNF, or a functionally equivalent variant thereof.
  • the present invention also relates to a composition
  • a composition comprising human GDNF or a functionally equivalent variant of GDNF wherein the GDNF is glycosylated and wherein the composition
  • (i) comprises a percentage of GDNF by weight with with respect to the total protein in the composition greater than 90% and / or
  • IGFBP-5 and / or IGFBP-7 are examples of IGFBP-5 and / or IGFBP-7.
  • the invention relates to a composition according to the invention for use in medicine as well as for use in the treatment or prevention of a neurodegenerative disorder.
  • the present invention relates to an alphavirus expression vector comprising nucleic acids of:
  • alphavirus expression vector refers to any nucleic acid molecule that comprises a recombinant alphavirus genome that comprises a nucleic acid sequence encoding human GDNF.
  • the nucleic acid molecule can be a plasmid or a linear fragment, in the form of single stranded DNA or RNA.
  • the nucleic acid molecule is a plasmid DNA or a linear fragment in the form of RNA.
  • alphavirus vector also includes recombinant alphaviruses, that is, alphavirus particles that comprise a nucleic acid molecule as described above. In one embodiment, the alphavirus expression vector is one with the sequence of SEQ ID NO. 1.
  • the alphavirus vector can have different origins, Aura virus, Babanki virus, Barmah Forest virus, Bebaru virus, Buggy Creek virus, Chikungunya virus, Eastern equine encephalitis virus, Everglades virus, Fort Morgan, Getah virus, Highlands J virus, Kyzylagach virus, Mayaro virus, Mi dde lburg virus, Mucambo virus, Ndumu virus, O'Neong-Nyong virus, Pixuna virus, Ross River virus , Sagiyama virus, Semliki Forest virus, Sindbis virus, South African arbovirus No. 86, Una virus, Venezuelan equine encephalitis virus, West equine encephalitis virus and Whataroa virus.
  • the alphavirus vectors are derived from the Semliki Forest virus (SFV) (Liljestróm and Garoff (1991) Sindbis virus (SIN) (Xiong et al. (1989) Science 243, 1188-1191), or equine encephalitis virus Venezuelan (VEE) (Pushko et al. (1997) Virology 239, 389-401).
  • SFV Semliki Forest virus
  • SI Sindbis virus
  • VEE equine encephalitis virus Venezuelan
  • alphavirus genomes The structure and sequence of alphavirus genomes is known in the prior art (see, for example, US Patent No. 5,739,026, which is incorporated by reference). Briefly, the genome comprises sequences that encode non-structural proteins (nsPs), sequences that encode structural proteins (e.g., the capsid, envelope proteins, etc.), as well as regulatory sequences necessary for replication and packaging.
  • nsPs non-structural proteins
  • structural proteins e.g., the capsid, envelope proteins, etc.
  • the main regulatory sequences necessary for replication are located at the terminal ends of the genome (usually in the first and last 250 nucleotides).
  • sequence 5 'capable of directing the replication of the alphavirus and “sequence 3' capable of directing the replication of the alphavirus” refer to these extremes genome terminals
  • the 3 'sequence capable of directing the replication of the alphavirus also includes a terminal sequence of polyadenins (Poly A).
  • the term "a sequence coding for non-structural proteins capable of directing the replication of alphaviral RNA” refers to the nsPl-4 polypeptide, which is subsequently divided into four separate proteins.
  • the alphavirus vector further comprises a subgenomic promoter region (SG), for example the 26S promoter, or a functional equivalent thereof.
  • SG subgenomic promoter region
  • sequences encoding human recombinant GDNF refers to the nucleotide sequences encoding the neurotrophic factor derived from human glia, also known as ATF1; ATF2; HFB1-GDNF.
  • the access number for the genomic reference sequences of the GDNF gene sequence, derived from Homo Sapiens is NG_011675.1 RefSeqGene.
  • the access number for the mRNA and the GDNF gene sequence protein reference sequences derived from Homo Sapiens are:
  • NP_954704.1 isoform 2 of the glia-derived neurotrophic factor (SEQ ID NO. 5).
  • the indicated access numbers can be found in the publicly available gene database of the National Center for Biotechnology Informatio n (NCBI) at http: / / w .ncbi.nlm.nih. gov.
  • the nucleotide sequences encoding the human recombinant GDNF in the present invention can be located in various regions of the vector, as long as said sequence does not prevent replication or packaging of the vector.
  • the nucleotide sequences encoding the human recombinant GDNF in the present invention are located at the 3 'position of the non-structural coding sequences, more preferably at the 3' position of the subgenomic promoter (SG) and their expression is controlled by said promoter. SG.
  • a functionally equivalent variant thereof refers to a molecule, which is functionally similar to the complete GDNF protein or a fragment thereof. Protein variants can be practically prepared by chemical modification of the protein obtained according to the methods of the present invention, using methods known in the art. Naturally, said variant will have a receptor binding and intracellular signaling activity similar to the corresponding natural protein.
  • Suitable methods for determining whether a variant of GDNF can be considered as a functionally equivalent variant includes, for example, the measure of the ability of said variant to promote the growth of neurites in PC12 cells in culture as described in Example 3.6 of the present invention or the measure of the ability to promote the reuptake of dopamine with high affinity for dopaminergic neurons of the midbrain as described by WO9306116 or the measure of the ability of the variant to promote the survival of cells of the sympathetic nervous system and parasympathetic as described in WO9306116.
  • protein variants can be obtained using the alphavirus expression vector where the sequence encoding hGDNF is conveniently modified at the level of its base sequence, and subsequently the corresponding protein variant is expressed. Variations in the primary structure of the protein, as well as variations in higher levels of structural organization, for example, in the type of covalent bonds that bind amino acid residues or the addition of groups to the terminal residues of the protein, are within the scope of the present invention.
  • proteins may include conservative and non-conservative alterations in the amino acid sequence that result in silent changes that maintain the functionality of the molecule including, for example, deletions, additions and substitutions. Such altered molecules may be desirable when they provide certain advantages in their use.
  • conservative substitutions would imply the substitution of one or more amino acids in the sequence of the corresponding protein with another amino acid having the same potency and ra ct er ⁇ sti ca s pa re ci da s of hydrophobicity / hydrophilicity giving rise to a functionally equivalent molecule.
  • conservative substitutions include, but are not limited to, substitutions in the following amino acid groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine, histidine; phenylalanine, tyrosine; and methionine.
  • Variants of GDNF suitable for use in the present invention comprise those having at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93% , at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with any of the GDNF sequences of human origin mentioned above throughout the entire sequence and, in particular, with isoform 1 of GDNF NP_000505.1), with isoform 2 (NP_954701.1 or NP_954704.1) of GDNF precursor to isoform 2 of neurotrophic factor derived from the glia.
  • the degree of identity between two polypeptides is determined using computer algorithms and methods that are widely known to those skilled in the art.
  • the identity between two amino acid sequences is preferably determined using the BLASTP algorithm [BLASTM Annual, Altschul, S. et al., NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990)].
  • Variants in the amino acid sequences of the protein defined above can be prepared by mutations in the nucleic acids encoding synthesized derivatives. Such variants include, for example, deletions, insertions or substitutions of residues in the amino acid sequence. Any combination of deletion, insertion and substitution can also be performed to achieve the final construction, as long as the final construction possesses the desired activity.
  • the mutations that will be made in the nucleic acid encoding the protein variant should not alter the reading phase and, preferably, will not create complementary regions that could produce a secondary mRNA structure.
  • these variants are normally prepared by directed mutagenesis of nucleotides in the DNA encoding the protein molecule, thereby producing the DNA encoding the variant, and then expressing the DNA (or RNA) in the recombinant cell culture.
  • Variants normally show the same qualitative biological activity as the non-variant protein.
  • an “analog” of the proteins defined above, according to the present invention refers to an unnatural molecule, which is substantially similar to the whole molecules or to an active fragment thereof. Said analog would show the same activity as the corresponding natural protein.
  • a “fragment” according to the present invention refers to any subset of molecules, that is, a shorter protein, which maintains the desired biological activity. The Fragments can be easily prepared by removing amino acids from any of the ends of the molecule and analyzing the result of their properties as receptor agonists. Proteases to simultaneously remove an amino acid from any of the N-terminal or C-terminal ends of a polypeptide are known in the art.
  • the alphavirus vectors of the present invention may lack at least one functional nucleic acid encoding a structural alphavirus protein selected from C, El, p62 and 6K.
  • the gene sequences of the structural proteins can be made non-functional by, for example, a mutation or mutations, an insertion or insertions or a deletion or deletions, or a combination thereof.
  • the gene sequences of the structural proteins become non-functional by deletion, that is, the recombinant alphavirus vector is totally or partially absent.
  • the most commonly used alphavirus vectors lack the nucleic acid encoding at least one, preferably all the alphavirus structural proteins selected from C, El, p62, and 6K.
  • the alphavirus vectors should, however, comprise the 5 'and 3' regulatory sequences necessary for effective viral replication and packaging.
  • the alphavirus expression vector may comprise regions encoding some structural proteins of alphavirus, such as a sequence encoding a protein with translation enhancing activity.
  • the sequence that codes for a protein with a translation-enhancing activity is the sequence that encodes the capsid of the Semliki Forest virus (SFV) comprising at least the first 34 amino acids thereof (Bl).
  • SFV Semliki Forest virus
  • This sequence with a translation-enhancing activity is a nucleic acid that can be linked to an activator, for example, a translation factor, to increase the level of translation.
  • an activator for example, a translation factor
  • any suitable gene translation enhancer can be used.
  • said enhancer may be the minimum SFV translation enhancer "Bl" comprising the nucleotide sequence encoding the first 34 amino acids of the SFV capsid.
  • the alphavirus expression vector further comprises a sequence encoding a self-cleavage protease or a target sequence for a cellular protease.
  • This sequence when translated, provides a cleavage site whereby the expressed protein or the fused protein, as described below, is processed post-translationally or cotraductionally in the final protein.
  • the sequence encoding a self-cleavage protease or the target sequence for a cellular protease is FMDV 2A protease (FMDV), or FMDV 2A autoprotease.
  • said sequence comprises the nucleotide sequence encoding the carboxy-t-eminin 1 domain of the SFV capsid with protein 1 activity.
  • sequence encoding a self-cleavage protease or the target sequence for a cellular protease is expressed in phase with the sequence with translation enhancing activity (Bl).
  • the alphavirus expression vector further comprises a sequence encoding a cis-cleaving auto-cleavage protease.
  • the nucleotide sequence encodes a cleavage site for a trans-acting protease; in this case, said protease could be expressed by the cell transfected with the viral vector of the present invention, natively, or alternatively, said protease could be added exogenously to release the GDNF or a variant of the protein of fusion.
  • any nucleotide sequence encoding a cleavage site for a trans-acting protease can be used, and consequently the amino acid sequence encodes said sequence.
  • said nucleotide sequence encoding a cleavage site of a trans-acting protease can be a nucleotide sequence encoding an amino acid sequence that can be cleaved by an endopeptidase, etc.
  • said nucleotide sequence encoding a cleavage site for a trans-acting protease is a nucleotide sequence encoding a cleavage site for a virus protease, a potyvirus, for example, such as tobacco etching virus (ETV), etc., and said protease can be expressed by the cell transfected with the viral vector of the invention (natively or because it has been properly transformed), etc.
  • ETV tobacco etching virus
  • said cleavage site may be recognized by a chemical reagent, for example, cyanogen bromide, for cleavage in methionine residues, etc.
  • the nucleotide sequence for the GDNF Human recombinant, or a functionally equivalent variant thereof is fused in phase and downstream of the sequence encoding the self-cleavage protease or the target sequence for a cellular protease.
  • the complete vector comprises a functional promoter in eukaryotes, particularly a promoter that is recognizable by a eukaryotic RNA polymerase, such as a cytomegalovirus (CMV) promoter and a transcription termination signal sequence , a signal sequence derived from SV40, for example.
  • a eukaryotic RNA polymerase such as a cytomegalovirus (CMV) promoter
  • CMV cytomegalovirus
  • the alphavirus expression vector further comprises a promoter that is recognized by a eukaryotic RNA polymerase.
  • the promoter recognizable by a eukaryotic RNA polymerase is the cytomegalovirus (CMV) promoter.
  • CMV cytomegalovirus
  • the total size or length of the recombinant alphavirus vector must be compatible for packaging into infectious alphavirus particles. More preferably, they should not exceed more than 20% of the size of a natural alphavirus genome.
  • RNA or DNA constructs to prepare the viral vector of the invention can be obtained by conventional molecular biology methods included in the general laboratory manuals, for example, in "Molecular cloning: a laboratory manual” (Joseph Sambrook, David W. Russel Eds. 2001, 3rd ed. Cold Spring Harbor, New York) or in “Current protocols in molecular biology” (FM Ausubel, R. Brent, RE guitarist, DD Moore, JA Smith, JG Seidman and K. Struhl Eds, vol 2. Greene Publishing Associates and Wiley Interscience, New York, NY Updated September 2006.
  • the alphavirus or alphavirus genomes or fragments thereof can be obtained by various techniques and from various sources. They can be artificially synthesized, cloned from plasmids or viruses isolated by RT-PCR, or derived or purified directly from virus samples deposited in libraries.
  • the alphaviral expression vector of the invention is a cytopathic vector.
  • cytopathic refers to the fact that it is capable of inducing a series of morphological or functional changes in the cell as a result of viral infection and that they manifest as cell rounding, substrate separation, cell lysis, syncytium formation, formation of inclusion bodies or stopping the synthesis of endogenous proteins.
  • the cytopathogenicity of a vector can be determined routinely by an expert using any method known in the state of the art including direct observation of the cells after contacting them with a vital dye, such as methyl violet, as described in patent application WO2008065225.
  • the cytopathic effect of the alphaviral expression vector results in cytopathic effect after a certain period of incubation of the cells with said vector in at least 80%, at least 85%, at least 90%, at least 95% of the cells.
  • the cytopathic effect is determined by measuring the inhibition in the cell's ability to synthesize endogenous proteins after infection with the virus or transfection with the viral vector.
  • the measure of the inhibition of the ability of the cell to synthesize endogenous proteins is carried out by a method as described in example 3 of the present invention wherein the inhibition in the synthesis of endogenous proteins is determined by measuring in the culture medium of a secreted protein so that a vector is considered to have a cytopathic effect when the levels of said secreted protein are 20%, 15%, 10%, 5%, 4%, 3%, 2% or 1% with respect to the levels produced by cells that have not been infected with the vector.
  • said secreted protein is IGFBP-4, IGFBP-5 or IGFBP-7.
  • the present invention also relates to eukaryotic cells comprising an alphavirus vector according to any of the embodiments presented in the present invention.
  • Various eukaryotic cells can be efficiently transformed by the alphavirus expression vector, in particular of SFV.
  • eukaryotic cells comprising an alphavirus expression vector refers to, and without limitation:
  • the cell population or cell line to be used in the present invention may comprise mammalian cells, such as red blood cells, epithelial cells, endothelial cells, fibroblasts, hepatocytes, neurons, glial cells, etc.
  • the cells are preferably established as cell lines that can be cultured and stored.
  • the cells can be of various mammalian origins, including human, rodent, bovine, pig, canine, etc.
  • Preferred cells are of human or rodent origin (eg, murine, rat or hamster). Typical examples of such cells include BHK-21, CHO-K1, HEK293, VERO, and C6 glioma cells. It should be understood that any other mammalian cell can be used in the present invention.
  • the present invention further relates to a fusion protein comprising the SFV capsid protein bound to the human GDNF protein, or a functionally equivalent variant thereof.
  • the fusion protein comprises at least the first 34 amino acids of the SFV capsid protein bound to a self-cleavage protease, the latter also bound to the human GDNF protein, or a functionally equivalent variant of the same.
  • fusion proteins can be obtained from alphavirus constructs, in which:
  • nucleotide sequence that encodes the human recombinant GDNF or a variant works 1 equivalent to it, is fused in 3 ' position, and maintaining the reading phase, with the sequence encoding the self-cleavage protease or the target sequence for a cellular protease;
  • nucleotide sequence encoding the human recombinant GDNF is fused at 3 ' position, and maintaining the reading phase, with the sequence encoding the self-cleavage protease or the sequence target for a cellular protease, the latter fused in 3 ' position and in phase with the sequence coding for a protein with a translation enhancing activity;
  • the nucleotide sequence that encodes the human recombinant GDNF, or a functionally equivalent variant thereof is fused in 3 ' position and maintaining the reading phase with the sequence that encodes for the self-cleavage protease or the target sequence for a cellular protease, the latter fused in phase and 3 ' position with the sequence encoding the capsid of the Semliki Forest virus (SFV) comprising at least the first 34 amino acids Of the same.
  • SSV Semliki Forest virus
  • the fusion protein is that of the sequence SEQ ID NO. 2.
  • the present invention relates to a method for the production of a recombinant human GDNF protein, or a functionally equivalent variant thereof, comprising:
  • eukaryotic cells comprising an alphavirus expression vector, said vector comprising the nucleic acids of i) a 5 'sequence capable of directing the replication of the alphavirus; ii) a sequence coding for non-structural proteins capable of directing the replication of alphaviral RNA; iii) a subgenomic promoter of the alphavirus; iv) a sequence encoding the recombinant human GDNF, or a functionally equivalent variant thereof, operably linked to the subgenomic promoter that directs protein expression in eukaryotic cells; v) a 3 'sequence capable of directing the replication of the alphavirus;
  • the method for the production of human recombinant GDNF, or a functionally variant equivalent thereof it further comprises f) purifying the recombinant GDNF by chromatography.
  • Step (a) of the method for the production of a recombinant human GDNF protein, or a functionally equivalent variant thereof comprises providing eukaryotic cells comprising an alphavirus expression vector.
  • the different components of the alphavirus expression vector have been defined in detail above and are used in the same manner in relation to the method for the production of a human recombinant protein.
  • Step (b) of the method for the production of a human recombinant GDNF protein, or of a variant f u n c i or n at 1 me n t and equivalent thereof is carried out for a time sufficient for the synthesis of cellular proteins to be inhibited.
  • the term "inhibition of cellular protein synthesis”, as used in the present invention, refers to the fact that the cell loses the ability to synthesize proteins encoded by the genome itself at the expense of proteins encoded by the viral genome.
  • the inhibition of cell protein synthesis can be determined by standard methods known to an expert, such as the determination of the levels or activity of endogenous proteins that naturally appear in the culture medium such as, for example. , IGFBP-4, IGFBP-5 and / or IGFBP-7 or by determining the ability of extracts obtained from infected cells to promote the translation of a particular mRNA or a fraction of poly (A +) compared to non-infected cell extracts, as described in van Stegg et al.
  • Step (b) of the method of the invention is maintained long enough for an inhibition of the synthesis of endogenous proteins of at least 50%, at least 60%, at least 70%, at least one 80%, at least 90%, at least 95% or 100% inhibition with regarding synthesis in the absence of viral infection.
  • the culture or incubation of steps b) or d) is carried out at a temperature between 30 and 40 ° C for a period of time between 2 and 50 hours.
  • step b) is carried out at a temperature of 37 ° C, preferably for 4 or 8 h.
  • step b) is carried out at a temperature of 33 ° C, preferably for 4, 8, 12 or 24 h.
  • the culture or incubation of step b) is carried out at a temperature of 33 ° C for 8 hours.
  • Step c) of the method of the invention comprises the removal of the culture supernatant resulting from step b).
  • Step d) of the method comprises culturing or incubating said eukaryotic cells in a culture medium for a period of time, so that the expression of the recombinant GDNF is achieved, but without cell death.
  • cell death is used interchangeably to refer to apoptosis or programmed cell death and refers to a process that involves a series of biochemical processes that give rise to a series of morphological modifications such as membrane modifications, nuclear fragmentation, Chromatin condensation, chromosomal DNA fragmentation and cell shrinkage.
  • Suitable methods for determining the number of cells in the culture that suffer apoptosis include, among others, the dyeing with vital dyes, DNA fragmentation, caspases activity, decreased mitochondrial membrane potential, production of reactive oxygen species, condensation of chromatin and ex ter na 1 izacion of phostatidylserine.
  • step d) is carried out so that the number of dead cells in the culture is at most 1%, 2%, 3%, 4%, 5%, 6%, 7 %, 8%, 9%, 10%, 15%, 20% or 30% with respect to total cells in the culture.
  • the culture or incubation of step d) is carried out at a temperature of 33 ° C or a temperature of 37 ° C .
  • the culture or incubation of step d) is carried out for 24 hours or 48 h.
  • culture or incubation of step d) is carried out for 37 hours for 24 hours, for 33 hours for 33 hours, for 33 hours for 48 hours.
  • Step f) of the method for the production of GDNF comprises the purification of the recombinant GDNF from the culture medium
  • the alphavirus expression vector in the method for the production of human recombinant GDNF, or of a variant f u n c i or n at 1 me n t and equivalent thereof, the alphavirus expression vector further comprises an in vitro transcribed RNA.
  • the alphavirus expression vector in the method for the production of human recombinant GDNF, or of a variant f u n c i or n at 1 me n t and equivalent thereof, the alphavirus expression vector further comprises viral particles comprising the vector RNA.
  • the alphavirus expression vector in the method for the production of human recombinant GDNF, or of a variant f u n c i or n at 1 me n t and equivalent thereof, the alphavirus expression vector further comprises a promoter that is recognizable by a eukaryotic RNA polymerase.
  • the promoter recognizable by a eukaryotic RNA polymerase is the cytomegalovirus (CMV) promoter.
  • CMV cytomegalovirus
  • the alphavirus expression vector further comprises a sequence encoding a protein with a translation-enhancing activity.
  • the sequence that encodes a protein with translation enhancing activity is the sequence that encodes at least the first 34 amino acids of the Semliki Forest virus (SFV) capsid.
  • the alphavirus expression vector in the method for the production of human recombinant GDNF, or a functionally equivalent variant thereof, further comprises a sequence encoding a self-cleavage protease or a target sequence for a cellular protease .
  • the sequence encoding a self-cleavage protease or the target sequence for a cellular protease is expressed in phase with the sequence with translation enhancement activity.
  • the sequence encoding a self-cleavage protease is the 2A self-protection of foot-and-mouth disease virus (FMDV) .
  • the nucleotide sequence encoding the human recombinant GDNF, or a functionally variant equivalent thereof is fused in 3 ' position and maintaining the reading phase with the sequence coding for the self-cleavage protease or the target sequence for a cellular protease.
  • the alphavirus in the method for the production of human recombinant GDNF, or a functionally equivalent variant thereof, is SFV.
  • eukaryotic cells are mammalian cells selected from BHK, CHO, VERO, and C6 glioma cells.
  • eukaryotic cells comprising an alphavirus expression vector according to the present invention can be prepared by first obtaining a template DNA for RNA synthesis.
  • This method for the preparation of a template DNA comprises linearizing the plasmid pSFV-hGDNF by incubating said plasmid with a suitable restriction enzyme, such as Spe I.
  • a suitable restriction enzyme such as Spe I.
  • the digestion product of the Plasmid is conveniently extracted by mixing with, for example, phenol / chloroform in the presence of a salt such as, for example, NaAc, stirring, centrifugation and transfer of the upper phase to a new tube. This extraction can be repeated as desired.
  • the plasmid is then precipitated by the addition of cold absolute ethanol, followed by stirring, incubation at -20 °, centrifugation, removal of the supernatant, and addition of 70% ethanol. A subsequent centrifugation, discarding the supernatant, allows to obtain a precipitate containing the linearized plasmid.
  • eukaryotic cells containing an alphavirus expression vector can be prepared by first obtaining a template DNA for the synthesis of AR.
  • RNA synthesis can be performed by preparing a mixture of linearized plasmid pSFV-hGDNF prepared as described in the previous paragraph.
  • the mixture preferably comprises the linearized plasmid pSFV-hGDNF, reaction buffer, CAP analog (m7G (5 ' ) ppp (5 ' ) G) (New England Biolabs. Ref. S1404S), nucleotide triphosphate (ATP, CTP, UTP, and GTP), DTT, RNase inhibitor (Promega. Ref. N2511), SP6 polymerase (New England Biolabs. Ref. M0207S).
  • the mixture is incubated under suitable conditions to increase RNA synthesis, preferably for 1 hour at 37 ° C.
  • eukaryotic cells comprising an alphavirus expression vector according to the present invention can be prepared by electroporation of BHK cells with SFV-hGDNF RNA as obtained in the preceding paragraph and the expression of hGDNF.
  • This protocol includes the growth of BHK cells in culture bottles until they reach confluence (a 75 cm 2 confluent culture bottle comprises approximately 5 x 10 6 cells). The cells are trypsinized, counted and centrifuged. Optionally, they are subsequently washed with, for example, phosphate buffered saline (PBS without Ca / Mg), centrifuged and resuspended again in PBS without Ca / Mg.
  • PBS phosphate buffered saline
  • electroporation is carried out later.
  • electroporation is performed at room temperature by applying two consecutive 800 volt pulses, maintaining the capacitance at 25 F (Biorad electroporator). These conditions are most suitable in the case of BHK cells, since they give rise to almost 100% electroporated cells, thereby blocking almost 100% of protein synthesis in host cells in the culture. If several aliquots of cells are electroporated, they can be mixed and diluted in complete BHK medium (Glasgow-MEM (Invitrogene. Ref.
  • electroporated cells are preferably incubated for 6 to 12 hours, more preferably for about 8 hours at 33 ° C with 5% C0 2 . This incubation time period allows a convenient inhibition of cell protein synthesis. Subsequently, the supernatant is removed, thus eliminating the culture medium comprising serum and the cellular proteins already produced, and the cells are subsequently washed with PBS (without Ca / Mg).
  • FBS fetal bovine serum
  • BHK medium without serum is added and the mixture is incubated, preferably at 33 ° C with 5% C0 2 for 48 h, more preferably for 24 h. It is preferable not to incubate the mixture for too long, thus preventing cell lysis and thus releasing small amounts of protein to the supernatant that could interfere with the purification of hGDNF.
  • the culture medium is then collected, centrifuged and the supernatant filtered and purified to discard any material except hGDNF protein.
  • eukaryotic cells comprising an alphavirus expression vector according to the present invention can be prepared by infection of BHK cells with SFV-hGDNF viral particles and hGDNF expression.
  • the production of SFV viral particles is based on the coelectroporation of BHK cells with the recombinant RNA of SFV-hGDNF and with two helper RNAs (or helper), which carry genes that encode the capsid of SFV, and envelope proteins. , respectively, (Smerdou and Liljestróm, 1999).
  • template DNAs and RNAs are prepared from plasmids pSFV-hGDNF, pSFV-helper-S2, and pSFV- helper-C-S219A as described above.
  • BHK cells are prepared as described and the resuspended cells are mixed in PBS with SFV-hGDNF RNA, SFV-helper-S2, and SFV-helper-C-S219A. Then, the mixture is transferred to an electroporation cuvette.
  • electroporation is performed at room temperature by applying two consecutive 800 volt pulses, maintaining the capacitance at 25] iF (Biorad electroporator).
  • the electroporated cells are then diluted in complete BHK medium supplemented with FBS at room temperature and preferably incubated for 24-48 hours at 33 ° C with 5% C0 2 .
  • the medium is collected, centrifuged to remove cell debris, and the supernatant comprising the viral particles can be frozen and stored at -80 ° C.
  • the infection of cells with viral particles prepared above can be performed according to the following methodology.
  • BHK cells are grown in culture bottles until they reach confluence.
  • the cells are then washed with PBS (with Ca / Mg) and subsequently infected with viral particles of SFV-hGDNF at a multiplicity of infection (moi) of ⁇ 5 (at least 2.5 x 10 7 viral particles for 5 x 10 6 cells) by adding the required amount of virus diluted in infection medium (for example, MEM containing 0.2% BSA, 2 mM glutamine and 20 mM Hepes).
  • infection medium for example, MEM containing 0.2% BSA, 2 mM glutamine and 20 mM Hepes.
  • the adsorption of the virus is allowed to proceed, preferably for 1 h at 37 ° C.
  • BHK medium with FBS is added to the infected cells and the mixture is incubated, preferably between 6 and 12 hours, more preferably for 8 hours, at 33 ° C with 5% C0 2 .
  • This incubation time period allows a convenient inhibition of cell protein synthesis.
  • the supernatant or culture medium is removed, and the cells are washed as many times as desired with PBS (without Ca / Mg). This washing step allows the removal of serum and cellular proteins present in the medium.
  • BHK medium without FBS is added and the mixture is incubated, preferably at 33 ° C with 5% C0 2 for 48 h, more preferably for 24h.
  • the culture medium is collected, centrifuged and the supernatant filtered and purified to discard any material except the hGDNF protein.
  • eukaryotic cells comprising an alphavirus expression vector according to the present invention can be prepared by transfecting BHK cells with (CMV) -SFV-hGDNF DNA with lipofectamine or other transfection reagent.
  • CMV CMV
  • SFV-hGDNF DNA and lipids are diluted separately in serum-free Optimem (Gibco) media.
  • Sibco serum-free Optimem
  • the ratio of DNA / lipofectamine can be optimized for each new DNA preparation, 1 g of SFV DNA / 5 ⁇ of lipofectamine (Gibco, ref. 18324-012) is a preferred combination for 10 6 cells.
  • the dilution of the lipids and the dilution of the DNA are mixed and stirred.
  • the mixture is incubated at room temperature and the culture medium is extracted from the cells, followed by the addition of Optimem medium free of fetal bovine serum to the cells. After incubation, preferably at 37 ° C, the medium is re-extracted from the cells, and FBS-free Optimem medium is added to the mixture of lipids and DNA.
  • the mixture is added to the cells and preferably incubated at 37 ° C for 1 hour.
  • the lipid-DNA mixture is removed from the cells, the BHK medium is added with FBS, and incubated for 6 to 12 hours, more preferably for about 8 hours at 33 ° C with 5% C0 2 .
  • This incubation time period allows a convenient inhibition of cell protein synthesis.
  • the supernatant is removed, thereby eliminating the culture medium containing FBS and the endogenous cellular proteins already produced, and the cells are washed with PBS (without Ca / Mg).
  • BHK medium without FBS is added and the mixture is incubated, preferably at 33 ° C with 5% C0 2 for 48 h, more preferably for 24h. It is preferable not to incubate the mixture for too long, thus preventing cell lysis and thus releasing small amounts of protein to the supernatant that could interfere with the purification of hGDNF.
  • the culture medium is then collected, centrifuged, the supernatant filtered and purified to discard any material except hGDNF protein.
  • transfection such as those using calcium phosphate, the use of liposomes, electroporation and the like can also be used.
  • step b) is carried out at approximately 37 ° for approximately 8 h and step d) is carried out at approximately 37 ° for approximately 24 h. In another embodiment, step b) is carried out at approximately 37 ° for approximately 8 h and step d) is carried out at approximately 33 ° for approximately 24 h. In another embodiment, step b) is carried out at approximately 33 ° for approximately 8 h and step d) is carried out at approximately 33 ° for approximately 24 h. In another embodiment, step b) is carried out at about 33 ° for about 12 h and step d) is carried out at about 33 ° for about 24 h.
  • the hGDNF obtained is subsequently purified according to the following methodology.
  • a column of SP-sepharose is connected to a peristaltic pump.
  • the column is preferably equilibrated with 10 column volumes (CV) of phosphate buffer at a constant flow rate of 1.5 ml / min.
  • the pH of the culture medium containing hGDNF is adjusted to 8.2 with NaOH and the medium is filtered through a 0.22 ⁇ filtration unit.
  • the sample to be purified is loaded into the column and the flow (FT) is collected.
  • the column is then washed, preferably with 10 CV of phosphate buffer, pH 8.2, and the wash is collected.
  • the bound hGDNF is eluted, preferably with phosphate buffer, pH 7.4, and high concentrations of NaCl.
  • eukaryotic cells are transformed by electroporation.
  • the electroporation technique is well known in the field of biotechnology and an expert in the field can establish the optimal conditions. Briefly, approximately 25 g of RNA synthesized in vitro are mixed with 5 x 10 6 BHK-21 cells and electroporated in a 0.4 cm cuvette by applying two consecutive 800 V pulses and maintaining the capacitance at 25] iF.
  • eukaryotic cells are infected by viral particles produced by co-electroporation with the recombinant SFV-GDNF RNA and two helper RNAs that carry the genes encoding the SFV capsid and envelope proteins (SFV-helper -S 2 and SFV-helper-C-S219A, respectively) (Smerdou and Liljestróm, 1999).
  • SFV-hGDNF RNA approximately 50 g of SFV-hGDNF RNA, 50] ig of SFV-helper-S2, and 50] ig of SFV-helper-C-S219A are mixed with 5 x 10 6 BHK-21 cells, resuspended in 0.8 mi of PBS and electroporated in a 0.4 cm cuvette by applying two consecutive 800 V pulses and maintaining the capacitance at 25 iF.
  • 5xl0 6 BHK-21 cells are washed with 12 ml of PBS (with Ca / Mg) and infected with SFV-hGDNF viral particles at a moi of ⁇ 5 (at least 2.5x10 7 viral particles for 5 x 10 6 cells) by adding the required amount of virus diluted in 3 ml of infection medium (MEM containing 0.2% BSA, 2mM glutamine and 20 raM Hepes).
  • MEM infection medium
  • 5 x 10 6 BHK-21 cells are transformed by incubation at room temperature for 15 minutes with 5 g of SFV DNA / 25 ⁇ of lipofectamine (Gibco, ref. 18324-012).
  • any culture medium suitable for mammalian cells including RPMI, DMEM, supplemented with conventional additives (antibiotics, amino acids, serum, etc.) can be used.
  • Cells can be grown and stored in any appropriate device (tubes, flasks, bottles, etc.). Cell viability or absence of contamination can be verified before carrying out the methods of the present invention. Kit for the production of human recombinant GDNF
  • the present invention provides a kit for use in a method of producing recombinant human GDNF, comprising any of:
  • the present invention further relates to the use of an alphavirus or alpha viral particle expression vector according to any of the embodiments presented in the present invention for the production of recombinant human GDNF protein, or functionally equivalent variants thereof.
  • the present invention relates to the use of eukaryotic cells comprising the alphavirus expression vector according to any of the embodiments presented in the present invention for the production of recombinant human GDNF protein, or functionally equivalent variants thereof.
  • Compositions comprising glycosylated GDNF and therapeutic uses thereof The authors of the present invention have developed a method of purification of recombinant glycosylated GDNF that allows to obtain compositions comprising GDNF in amounts greater than those described in the state of the art. Therefore, in another aspect, the invention relates to a composition comprising human GDNF or a functionally equivalent variant of GDNF wherein the GDNF is glycosylated and wherein the composition
  • (i) comprises a percentage of GDNF by weight with respect to the total protein in the composition greater than 90% and / or
  • IGFBP-5 and / or IGFBP-7 IGFBP-5 and / or IGFBP-7.
  • GDNF GDNF
  • functionally equivalent variant have been described in detail previously.
  • the term "percentage” refers to the percentage of GDNF with respect to the total protein in the sample.
  • 90% of GDNF implies that of every 100 protein in the composition, at least 90 g correspond to GDNF.
  • the percentage of glycosylated GDNF in the sample is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.5% or at least 100%.
  • the GDNF is of human origin.
  • the term "functionally equivalent variant" has been described in detail above.
  • the functionally equivalent variant shows an identity of at least 94% with respect to GDNF of human origin.
  • glycosylation refers to a molecule in which at least one of the N-glycosylation sites, preferably the glycosylation sites at positions 126 and 162 in the human pre-proGDNF sequence. and the corresponding ones in the functionally equivalent variants of GDNF, are glycosylated.
  • the structure of glycosylation moieties is that which appears in mammalian cells and comprising glycans of the complex or hybrid type modified in terminal position by sialic acid residues, preferably disialiated and trisyallylated.
  • the glycosylated GDNF according to the invention contains at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least one 96%, at least 97%, at least 98%, at least 99% or 100% of the remnants of complex-type or sialylated hybrid glycans.
  • substantially free of IGFBP-4, IGFBP-5 and / or IGFBP-7 refers to the compositions containing at most 5%, 4%, 3%, 2%, 1%, a 0.5%, 0.1%, 0.05%, 0.01% of one or more proteins selected from IGFBP-4, IGFBP-5 and / or IGFBP-7.
  • the compositions of the invention are substantially free of IGFBP-5 and / or IGFBP-7.
  • IGFBP-4 refers to a protein that is capable of binding IGF-I and IGF-II as described by LaTour et al. (Mol. Endocrinol., 1991, 4: 1806-14)
  • IGFBP-5 refers to a protein with IGF-I and / or IGF-II binding capacity, the molecular weight of which is approximately 30 kDa, its pl of approximately 8, 6 and which was described by Allander et al. (J. Biol. Chem. 269: 10891-8).
  • IGFBP-7 refers to a protein with IGF-I binding capacity whose pl is 8.3 as described by Wilson et al. (J. Clin. Endocrinol. Metab. 86: 4504-11).
  • the compositions of the invention show a specific activity superior to the compositions described in the state of the art.
  • specific activity refers to the activity of an enzyme per milligram (mg) of protein and is usually expressed in units of activity per milligram of protein.
  • the compositions of the invention show a specific activity greater than 1 x 10 7 units / mg determined by the ability to promote survival and stimulate the growth of neurites from neurons obtained from the dorsal root ganglion (Davies, AM (1989) in Neurotrophic Factor Bioassay Using Dissociated Neurons, Nerve Gro th Factor. Rush, RA (eds): John Willey and Sons, Ltd. 95).
  • compositions of the invention show a specific activity greater than 25,000 TU / mg determined by the ability to promote dopamine uptake in midbrain cultures according to the method of measuring the ability of GDNF to promote Tritiated dopamine uptake in cells of primary rat embryonic mesencephalon cultures under the conditions described by Lin et al. (J. Eurochem., 1994, 63: 758-768). In particular, the determination according to Lin et al. understands:
  • the number of trophic units (TU) of GDNF activity is determined as the reciprocal of the dilution that resulted in 50% of the maximum stimulation of uptake of [ 3 H] DA by the culture.
  • the specific activity is the ratio between the value of TU per milliliter and the concentration of protein per milliliter.
  • the invention relates to a composition according to the invention for use in medicine.
  • the invention relates to a composition according to the invention for use in the treatment or prevention of a neurodegenerative disorder.
  • the invention relates to the use of a composition according to the invention for the preparation of a medication for the treatment or prevention of a neurodegenerative disorder.
  • the invention relates to a method for the treatment or prevention of a neurodegenerative disorder in a subject comprising the administration to said subject of a composition according to the invention.
  • neuronal dysfunction refers to any type of alteration in which neuronal integrity is altered and includes, without limitation, motor neuron disorders including amyotrophic lateral sclerosis, neurological disorders associated with diabetes, Parkinson's disease, Alzheimer's disease, and Huntington's chorea, glaucoma or other diseases and conditions that involve degeneration of retinal ganglion cells; sensory neuropathy caused by injury, or insults, or degeneration, of sensory neurons; pathological conditions, such as inherited retinal degenerations and age-related retinopathies, diseases or injuries, in which photoreceptor degeneration occurs and is responsible for vision loss; and lesion or degeneration of sensory cells of the inner ear, such as hair cells and auditory neurons to prevent and / or treat hearing loss due to a variety of causes.
  • motor neuron disorders including amyotrophic lateral sclerosis, neurological disorders associated with diabetes, Parkinson's disease, Alzheimer's disease, and Huntington's chorea, glaucoma or other diseases and conditions that involve degeneration of retinal ganglion cells;
  • FIG. 1 Purification of rat GDNF from the conditioned medium of BHK cells. Analysis of the fractions obtained after cation exchange chromatography of conditioned media of transfected BHK cells with rat GDNF. Fractions eluted with a NaCl gradient were analyzed by SDS-PAGE, followed by staining with Coomasie Blue. Fractions containing rat GDNF (14-16) also have a very abundant protein that was identified as IGFBP-5.
  • Figure 2 Purification of human GDNF from medium conditioned of MDX-12 cells transduced with a lentiviral vector containing hGDNF: cation exchange chromatography.
  • the conditioned medium obtained from MDX-12 was adjusted to pH 8.2 and then passed through a fast-flowing resin of SP-Sepharose.
  • the bound hGDNF was eluted with a gradient of 0.15 to 1 M NaCl. 2 ml fractions were analyzed by SDS-PAGE under reducing conditions followed by staining with Coomassie blue (A) or Western blotting to detect hGDNF (B) or IGFBP-7 (C).
  • Figure 3 Purification of human GDNF from conditioned medium of MDX-12 cells transduced with a lentiviral vector containing hGDNF: gel filtration chromatography. SP-Sepharose chromatography fractions containing hGDNF and low amounts of IGFBP-7 were desalted and concentrated by lyophilization. The lyophilisate was resuspended and applied to a Superdex 200 HR column.
  • A Protein chromatogram (absorbance at 215 nm) versus volume (mi). The horizontal bar indicates the fractions that were analyzed by SDS-PAGE followed by staining with Coomasie blue (B). The first peak of the chromatogram corresponds to the IGFBP-7 and the second to the GDNF.
  • FIG. 4 SFV-hGDNF expression vector.
  • A Vector diagram. The vector contains the SFV replicase followed by a subgenomic promoter (Pr sg). The ORF encoding hGDNF is located downstream of the Pr sg fused in phase with the minimum translation enhancer of the SFV capsid (Enh bl) and FMDV 2A autoprotease (2A). Enh bl codes for the first 34 amino acids of the SFV capsid and 2A codes for the 17 amino acids indicated in the figure.
  • B Expression of hGDNF.
  • RNA electroporated cells of an SFV vector encoding puromycin N-acetyl transferase were used as a negative control (SFV-pac).
  • the supernatant of MDX-12 cells expressing hGDNF (GDNF lenti) or commercial rat GDNF expressed from a baculovirus vector in cells Insects (insect GDNF) were used as positive controls.
  • the amount of purified recombinant protein or supernatant (insect GDNF) used in this study is indicated under the gel.
  • FIG. 5 Analysis of the conditioned medium of BHK cells electroporated with the SFV vector. It was analyzed by Western blotting of the conditioned medium of electroporated BHK cells with SFV-hGDNF RNA or without RNA (control). Once the cells were electroporated, the medium was changed to medium without serum at the indicated times and was collected 24 h later. hGDNF is expressed at elevated levels in the middle of transfected cells. Two proteins secreted to the culture medium in transfused cells without RNA, IGFBP-5 and IGFBP-4, have completely disappeared due to the strong inhibition of endogenous protein synthesis induced by the SFV vector. The stern transfer of ⁇ -actin was performed from cell lysates that indicated that all culture wells contained the same initial amount of cells.
  • Figure 6 Purification of human GDNF from BHK cells t r a n s f e c t ada s with an SFV vector containing hGDNF: cation exchange chromatography.
  • the conditioned medium obtained from the BHK cells was adjusted to pH 8.2 and then passed through a fast-flowing resin of SP-Sepharose.
  • the bound hGDNF was eluted in a single step with 0.5 M NaCl (El) and the eluate was analyzed by staining with Coomasie Blue (A) and Western blotting (B).
  • L Conditioned medium loaded in the column: FT: Conditioned medium after passing through the column; W: column wash; El: elution with 0.5 M NaCl; E2: elution with 1 M NaCl.
  • FIG. 7 GDNF induced differentiation of PC-12.
  • PC-12 cells were incubated at a low density (2 x 10 3 cells / cm 2 ) in collagen coated culture plates.
  • To the culture medium was added pure glycosylated hGDNF (25 ng / ml) purified from the supernatant of BHK cells transfected with the SFV-hGDNF vector, or non-glycosylated hGDNF produced in bacteria (50 ng / ml) on day 0.
  • Phase contrast images were taken on day 8.
  • Figure 8 Comparison between two protocols for the purification of human glycosylated GDNF. In the left panel, a modification of the protocol described by Ansorena et al. (2009) for the purification of glycosylated human GDNF.
  • the method of the invention to easily produce a high amount of glycosylated GDNF from transfected BHK cells with an SFV vector expressing hGDNF applied at two different preparative scales.
  • Figure 9 Study of the stability of glycosylated GDNF after purification of transfected BHK cells with SFV-hGDNF. The figure shows that most of the non-glycosylated protein degrades after 24 hours of incubation at room temperature and disappears after 48 hours. However, glycosylated hGDNF is still present after 3 weeks of incubation at room temperature.
  • Example 1 Production of human glycosylated GDNF using stably transfected BHK cells with hGDNF
  • BHK cells are commonly used for transfection. This cell line has already been used to stably express and purify the rat GDNF (rGDNF) from the conditioned medium. To do this, a cDNA fragment containing the coding region of the rGDNF gene was obtained by PCR of the total rat brain RNA Pl and was cloned into the vector pDEST26 using Invitrogen Gateway technology. BHK cells were transfected with pDEST26-GDNF and cell clones stably expressing rGDNF selected with G-418 (Invitrogen).
  • rGDNF rat GDNF
  • the rGDNF released to the culture medium was purified through two steps comprising a cation exchange chromatography followed by a molecular exclusion chromatography (Garbayo et al., 2007).
  • a recurring problem that was observed when attempting to purify the rat GDNF from the medium of BHK cells expressing this protein was the copurification of another protein present in the supernatant, which was identified by LC-ESI-MS / MS analysis as IGFBP-5 (16 peptides corresponding to IGFBP-5 were detected with a 52% coverage of the peptide chain).
  • Example 2 Production of human glycosylated GDNF using immortalized and transduced human dermal fibroblasts with a lentiviral vector containing hGDNF
  • hGDNF was expressed using a cell line of human dermal fibroblasts immortalized and transduced with a lentiviral vector (pCCL-WPS-hGDNF) containing the hGDNF gene (MDX-12 cells) (Sajadi et al., 2006 ). These cells were grown in DMEM with Glutamax supplemented with 10% FBS, 100 units / ml of penicillin and 100 g / ml of streptomycin. The hGDNF was purified from the conditioned medium (supernatant) of the MDX-12 cells to obtain a very low amount of biologically active hGDNF.
  • MDX-12 cells were grown in a medium with 10% FBS until reaching 80% confluence. After washing with PBS, the cells were grown in 175 cm 2 culture bottles with 22 ml of serum-free medium. The conditioned medium containing hGDNF is collected every 48 h and stored at -20 ° C
  • a total amount of 20 L of conditioned medium from MDX-12 cells was processed in two batches of 10 L each.
  • the SP-Sepharose resin (GE Healthcare Biosciencies) (30 ml) was packed in a XK / 16/20 column (GE Healthcare Biosciencies) and 10 L of the conditioned medium containing hGDNF was passed at a flow rate of 3 ml / min for 2.5 days at 4 ° C.
  • the column was washed with 10 column volumes (CV) of 10 mM phosphate buffer pH 8.2, 150 mM NaCl and 5 mM EDTA at the same flow rate.
  • the bound hGDNF was eluted with a linear gradient of 0.15 M to 1 M NaCl in the same buffer, at a flow rate of 0.62 ml / min. 2 ml fractions were collected and analyzed by SDS-PAGE followed by staining with Coomasie Blue and Western blotting under reducing conditions (Figure 2). Staining with Coomasie Blue showed two major bands present in most fractions ( Figure 2A). A band corresponding to a protein with a MW of 29 kDa eluting at lower concentrations of salt was the most abundant. The second band of 18 kDa began to elute at 0.5 M NaCl and its MW agreed with the expected size for the hGDNF monomer.
  • the first chromatography did not allow us to obtain pure hGDNF due to the copying of IGFBP-7. If the physicochemical properties of IGFBP-7 and hGDNF are compared, both proteins are very similar since they have a high theoretical plot of 8.3 and 9.26, respectively, so they both bind to the cation exchanger . Although IGFBP-7 has a lower pl and, therefore, elutes at a lower salt concentration than hGDNF ( Figure 2A), the abundance of IGFBP-7 widens its peak overlapping with the peak corresponding to the elution of hGDNF. HGDNF is a homodimeric protein with a MW very similar to that of IGFBP-7.
  • the group of fractions selected from the second chromatography (24 ml) were desalted to 50 raM NaCl in 10 raM phosphate buffer pH 8.2 using a HiPrep 26/10 desalination column (GE Healthcare Biosciences) in an FPLC AKTA purifier (GE Healthcare B ios ci e nc ies) at a flow rate of 3 ml / min. Protein concentration was monitored throughout the process and all fractions containing protein were collected and pooled. At this stage, the initial volume was diluted 1.5 times. Since the maximum loading volume in this column is 15 ml, this chromatography was performed in two stages (2 x 12 ml).
  • Example 3 Production and purification of human glycosylated GDNF from mammalian cells transfected or infected with a Semliki Forest virus vector expressing hGDNF (SFV-hGDNF)
  • the complete cDNA corresponding to hGDNF was amplified by PCR from a human astrocyte cell line, SVGpl2 (Moretto et al., 1996) and was cloned into plasmid pDONR201 (Invitrogen) following the manufacturer's instructions.
  • the primers used were: 5 ' - GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGATGAAGTTATGGGATGTCG-3 ' (SEQ IDNO: 6), and 5
  • the hGDNF gene was amplified by PCR of the plasmid p DONR201-GDNF using the loss of guidelines: 5 ' - CGTAGTACGTAcccgggAAGTTATGGGATGTCGTGGC-3 ' (SEQ ID NO: 8) where the hybrid underlined sequence with the 5 ' end of the hGDNF gene and 5 " -CGTAGTACGTAcccgggrCAGATACATCCACACCTTTTAGC-3 ' (SEQ ID NO: 9) where the underlined sequence is complementary to the 3' end of the hGDNF gene (italic stop codon).
  • a 0.67 kb fragment was obtained that was digested with Xma I (sites indicated in bold) and was cloned into the unique Xma I site of pSFV-bl2A (Rodriguez-Mado z et al., 2005), generating plasmid pSFV-hGDNF.
  • the hGDNF gene was cloned in phase with the sequence which codes for the first 34 amino acids of the SFV capsid (Bl) and FMDV 2A autoprotease The first hGDNF methionine was removed, since the protein will be expressed as a fusion product that will be cleaved autocatalytically by protease 2A.
  • the structure of the vector is represented in Figure 4A.
  • Plasmid pSFV-hGDNF was linearized with Spel and used as a template for RNA synthesis using SP6 polymerase as previously described (Liljestrom and Garoff, 1994). Briefly, 1.5 g of linearized pSFV-hGDNF DNA was incubated for 1 h at 37 ° C in SP6 buffer supplemented with 1 mM of m 7 G (5 ' ) ppp (5 ' ) G (New England Biolabs), DTT 10 mM, a mixture of 1 mM rNTPs, 50 units of RNAse inhibitor (Promega), and 30 units of SP6 RNA polymerase (New England Biolabs) in a final volume of 50 ⁇ , producing 50 g of RNA.
  • RNA synthesized in vitro were mixed with 5 x 10 6 BHK-21 cells and electroporated in a 0.4 cm cuvette by applying two consecutive pulses at 800 V and 25 F. These electroporation conditions are used in a manner Routine with the SFV system and allow transfection of more than 95% of the cells.
  • the cells were diluted in 15 ml of complete BHK medium (Glasgow MEM, Gibco BRL, UK, supplemented with 5% FBS, 10% tryptose phosphate broth, 2 mM glutamine, 20 mM HEPES, 100 streptomycin 100 ⁇ g / ml and penicillin 100 IU / ml), seeded in 6-well plates (1.5 ml / plate) and incubated at 37 ° C with 5% C0 2 . After 4 h, the medium was removed and replaced with 1 ml of complete BHK medium without FBS. 20h later, the supernatants were collected and analyzed by Western blotting with an antibody specific for GDNF (Figure 4B).
  • hGDNF very high expression of hGDNF was observed in two duplicate experiments (channels 1 and 2).
  • the protein had a glycosylation pattern similar to that obtained in hGDNF secreted by MDX-12 cells (GDNF lenti), but much more complex than that observed in rat GDNF expressed from a baculovirus vector in insect cells (GDNF of insect) (R&D systems).
  • BHK cells were duplicated with duplicate with SFV-hGDNF RNA and without RNA (control) as described. They were placed on three 35 cm 2 plates with 5 x 10 5 cells from each electroporation and incubated with BHK complete medium at 33 ° C with 5% C0 2 . In a plate of each electroporation the medium was removed at 4 hours after plating, the cells were washed twice with PBS and 1 ml of the same medium without serum was added. In the second and third plates, the same procedure was followed, but changing the medium at 6 or 8 hours after electroporation.
  • hGDNF in BHK cells electroporated with SFV-hGDNF was optimized by assay with different temperatures and incubation times (see Table 1) BHK cells were electroporated with SFV-hGDNF RNA as described. Approximately 5 x 10 5 electroporated cells were placed on 35 era 2 plates and incubated with BHK complete medium at 33 ° C with 5% C0 2 for different times that we will call "Inhibition”. After 1 time of inhibition the medium was removed, the plates were washed twice with PBS and 1 ml of BHK complete medium without serum was added. The cells were incubated for different times that we will call "Incubation” and the supernatants were collected.
  • the presence of hGDNF in each supernatant was determined by Western blotting. Since the amount of endogenous proteins present in the culture medium of BHK cells transfected with the SFV-hGDNF vector was very low, 400 ⁇ of each supernatant was concentrated by precipitation with trichloroacetic acid. In order to evaluate the effectiveness of the inhibition of the synthesis of endogenous cellular proteins, the presence of IGFBP-4, which is efficiently secreted by BHK cells, was analyzed by Western blotting in the concentrated samples. The relative amount of hGDNF (in unconcentrated samples) and IGFBP-4 (in concentrated samples) was estimated by measuring the optical density (OD) of each band.
  • OD optical density
  • a total of 10 8 BHK cells were electroporated with 500 of SFV-hGDNF RNA synthesized in vitro as described (20 electroporations of 5 x 10 6 BHK cells with 25 of each RNA).
  • the electroporated cells were pooled, resuspended in a total volume of 200 ml of complete BHK medium, and distributed in 10 culture jars of 75 was 2 . After 8 hours of incubation at 33 ° C with 5% C0 2 , the medium was removed, the cells were washed twice with 10 ml of PBS (each bottle), and 10 ml of BHK complete medium without FBS was added.
  • the conditioned medium was collected from all the bottles, centrifuged at 1200 rpm to remove cell debris and frozen.
  • Purification of hGDNF was performed from a total volume of 95 ml of conditioned medium of BHK cells transfected with SFV-hGDNF. The medium was thawed, the pH was adjusted to 8.2 with NaOH and filtered through a 0.22 filtration unit ⁇ . As in the previous protocol, the sample was passed through the SP-Sepharose resin (0.2 ml). In this case, the resin was packaged in a disposable column (Bio-Rad) and the sample was allowed to flow through the column by gravity at 4 ° C.
  • the column was washed with 10 column volumes (CV) of 10 mM phosphate buffer at pH 8.2, 150 mM NaCl and 5 mM EDTA. Since hGDNF is the main protein present in the conditioned medium, the resin-bound protein was eluted in a single stage with 2 ml of 0.5 M NaCl. Additionally, an additional elution was performed with 1 M NaCl to ensure that all The bound hGDNF is spoken eluted from the resin.
  • CV column volumes
  • the only protein present in the elution was hGDNF, as detected by SDS-PAGE followed by staining with Coomassie Blue (Figure 6A) and confirmed by Western blotting ( Figure 6B).
  • the hGDNF present in the conditioned medium and in the elution of the cation exchange column was quantified by ELISA.
  • an initial amount of 62 g of hGDNF was started in 95 ml of medium and 16 g of hGDNF was obtained in 2 ml, thus recovering 26% of the protein contained in the initial sample. This global purification process lasted only three days ( Figure 8).
  • a total of 5xl0 8 BHK cells were electroporated with 2500 g of SFV-hGDNF RNA synthesized in vitro as described (100 electroporations of 5xl0 6 BHK cells with 25 g of each RNA).
  • the electroporated cells were pooled, resuspended in a total volume of 600 ml of complete BHK medium, and distributed in 50 culture jars of 75 was 2 . After 8 hours of incubation at 33 ° C with 5% C0 2 , the medium was removed, the cells were washed twice with 10 ml of PBS (each bottle), and 10 ml of BHK complete medium without FBS was added.
  • the conditioned medium was collected from all the bottles, centrifuged at 1200 rpm to remove cell debris and frozen.
  • Purification of hGDNF was performed from a total volume of 570 ml of conditioned medium of BHK cells transfected with SFV-hGDNF. The medium was thawed, the pH was adjusted to 8.2 with NaOH and filtered through a 0.22 ⁇ filtration unit. As in the previous protocol, the sample was passed through the SP-Sepharose resin (0.2 ml). In this case, the resin was packaged in a disposable column (Bio-Rad) and the sample was allowed to flow through the column by gravity at 4 ° C.
  • the column was washed with 10 column volumes (CV) of 10 mM phosphate buffer at pH 8.2, 150 mM NaCl and 5 mM EDTA. Since hGDNF is the main protein present in the conditioned medium, the resin-bound protein was eluted in a single stage with 0.4 ml of 0.5 M NaCl. Additionally, an additional elution was performed with 1 M NaCl to ensure that all The bound hGDNF is spoken eluted from the resin.
  • CV column volumes
  • the only protein present in the elution was hGDNF, as detected by SDS-PAGE followed by staining with Coomassie Blue and confirmed by Western blotting.
  • the hGDNF present in the conditioned medium and in the elution of the cation exchange column was quantified by ELISA.
  • an initial amount of 756 g of hGDNF was started in 570 ml of medium and 445 g of hGDNF were obtained in a volume of 0.4 ml, thus recovering 58% of the protein contained in the initial sample. This global purification process lasted only five days ( Figure 8).
  • glycosylated hGDNF is not commercially available, methods for purifying glycosylated GDNF (Garbayo et al., 2007 and Ansorena et al., 2009) from mammalian cells have been previously described and the same methodology has been used with some modifications to obtain pure glycosylated hGDNF.
  • this methodology is extremely laborious and requires a lot of time to produce high amounts of hGDNF for clinical purposes.
  • a new and simple method is proposed to obtain high amounts of purified hGDNF. It has been shown that in BHK cells transfected with an SFV vector expressing hGDNF, this protein is produced at elevated levels in the supernatant.
  • hGDNF becomes the only protein expressed in the supernatants of these cells, since the SFV vector induces a strong inhibition of the synthesis of endogenous cellular proteins.
  • the hGDNF produced with this method is highly glycosylated, which makes the protein more stable and probably less immunogenic, unlike the hGDNF produced using bacterial systems.
  • Glycosylated hGDNF could be very useful for the treatment of Parkinson's disease or other degenerative disorders, since its greater stability suggests that lower doses of this protein would be necessary for therapeutic use compared to non-glycosylated hGDNF.
  • GDNF glial-cell-line-derived neurotrophic factor
  • Sindbis virus an efficient, broad host range vector for gene expression in animal cells. Science 243: 1188-1191.

Abstract

The invention relates to a method for the production and purification of recombinant human GDNF or a functionally equivalent variant thereof, using eukaryotic cells that contain an alphavirus vector comprising a sequence encoding recombinant human GDNF or a functionally equivalent variant thereof, operably linked to the subgenomic promoter which directs the expression of the protein in a suitable expression host. The invention also relates to alphavirus vectors and eukaryotic cells containing said alphavirus vectors.

Description

VECTORES VIRALES Y PROCEDIMIENTOS UTILES EN LA PREPARACIÓN DE  VIRAL VECTORS AND USEFUL PROCEDURES IN THE PREPARATION OF
GDNF  GDNF
Campo de la invención Field of the Invention
La presente invención se refiere a la ingeniería genética y, en particular, a métodos para la producción del factor neurotrófico derivado de la glía (GDNF) humano y a los vectores de expresión de alfavirus. Antecedentes de la invención The present invention relates to genetic engineering and, in particular, to methods for the production of human glia-derived neurotrophic factor (GDNF) and alphavirus expression vectors. Background of the invention
El factor neurotrófico derivado de la glía (GDNF) fue descrito por primera vez por Lin et al. 1993, como un potente factor neurotrófico para neuronas dopaminérgicas . El gen para GDNF humano codifica una proteína madura de 134 aminoácidos con un peso molecular de 15 kDa que está formando un homodímero (30 kDa) unido por puentes disulfuro. En base a la secuencia de aminoácidos, tiene un pl de 9,26, el pH en el que la proteína tiene un número igual de cargas positivas y cargas negativas. Considerando que GDNF es una proteína altamente glicosilada, su masa molecular aparente en un gel de SDS-PAGE en condiciones reductoras varía entre 18 y 22 kDa (Lin et al., 1993) . De hecho, las N-glicosilaciones representan aproximadamente un 20- 30% de la masa molecular de GDNF. El GDNF es una proteína con un gran potencial terapéutico para el tratamiento de la enfermedad de Parkinson, del inglés "Parkinson's disease" (PD) , la esclerosis lateral amiotrófica, lesiones de la médula espinal, la lesión de los nervios periféricos, incluyendo nervios motores, como el nervio facial, nervios sensoriales y motores mixtos como el nervio ciático, enfermedades oculares como el glaucoma, o la degeneración de células ganglionares retínales inducida después de la transección del nervio óptico y otros modelos de degeneración retinal. Además, el GDNF juega un papel clave en la regulación negativa de las drogas de abuso, incluyendo psicoestimulantes , morfina y alcohol. La glicosilación es una de las modificaciones pos-traduccionales más habituales de las proteínas que puede afectar a sus propiedades necesarias para su aplicación terapéutica (Walsh y Jefferis, 2006) . La presencia y naturaleza de una cadena de oligosacáridos puede afectar al plegamiento, estabilidad, difusión, i nmuno ge n i c i dad , unión al ligando, vida media biológica, farmacodinámica y farmacocinética, así como a la actividad funcional de las glicoproteí ñas . La glicosilación parece jugar un papel importante en la estabilidad del GDNF. The glia-derived neurotrophic factor (GDNF) was first described by Lin et al. 1993, as a potent neurotrophic factor for dopaminergic neurons. The gene for human GDNF encodes a mature protein of 134 amino acids with a molecular weight of 15 kDa that is forming a homodimer (30 kDa) linked by disulfide bridges. Based on the amino acid sequence, it has a pl of 9.26, the pH at which the protein has an equal number of positive charges and negative charges. Considering that GDNF is a highly glycosylated protein, its apparent molecular mass in an SDS-PAGE gel under reducing conditions varies between 18 and 22 kDa (Lin et al., 1993). In fact, N-glycosylations represent approximately 20-30% of the molecular mass of GDNF. GDNF is a protein with great therapeutic potential for the treatment of Parkinson's disease, from English "Parkinson's disease" (PD), amyotrophic lateral sclerosis, spinal cord injuries, peripheral nerve injury, including motor nerves such as the facial nerve, sensory nerves and mixed motors such as the sciatic nerve, eye diseases such as glaucoma, or induced retinal ganglion cell degeneration after optic nerve transection and other models of retinal degeneration. In addition, GDNF plays a key role in the negative regulation of drugs of abuse, including psychostimulants, morphine and alcohol. Glycosylation is one of the most common post-translational modifications of proteins that can affect their properties necessary for therapeutic application (Walsh and Jefferis, 2006). The presence and nature of an oligosaccharide chain can affect folding, stability, diffusion, immunity, ligand binding, biological, pharmacodynamic and pharmacokinetic half-life, as well as the functional activity of glycoproteins. Glycosylation seems to play an important role in the stability of GDNF.
Entre los diferentes sistemas para producir proteínas recombinantes , el más adecuado para una estrategia terapéutica sería un método que produjera GDNF glicosilado. Dado que los sistemas bacterianos carecen de la capacidad de glicosilar proteínas, la expresión de GDNF glicosilado requerirá el uso de células eucariotas . Entre ellas, las células de mamífero son las mejores candidatas, ya que serán capaces de introducir el mismo patrón de glicosilación presente en el GDNF endógeno. Las células de mamífero son el sistema de expresión ideal para producir proteínas estructuralmente complejas, ya que ofrecen el mayor grado de fidelidad del producto necesario para un agente terapéutico (Walsh y Jefferis, 2006) . Among the different systems for producing recombinant proteins, the most suitable for a therapeutic strategy would be a method that produces glycosylated GDNF. Since bacterial systems lack the ability to glycosylate proteins, the expression of glycosylated GDNF will require the use of eukaryotic cells. Among them, mammalian cells are the best candidates, as they will be able to introduce the same glycosylation pattern present in endogenous GDNF. Mammalian cells are the ideal expression system for producing structurally complex proteins, since they offer the highest degree of fidelity of the product necessary for a therapeutic agent (Walsh and Jefferis, 2006).
Actualmente, el GDNF humano recombinante disponible comercialmente se ha producido en E. coli, y, por tanto, no está glicosilado. También existe disponible comercialmente un GDNF humano truncado, que carece de 31 residuos del extremo amino terminal de la secuencia de aminoácidos, que ha sido producido en células de mieloma murino NSO . Por tanto, existe la necesidad de desarrollar métodos y medios que permitan la preparación de GDNF humano glicosilado. Currently, commercially available recombinant human GDNF has been produced in E. coli, and therefore is not glycosylated. A truncated human GDNF is also commercially available, lacking 31 residues of the amino terminal end of the amino acid sequence, which has been produced in NSO murine myeloma cells. Therefore, there is a need to develop methods and means that allow the preparation of glycosylated human GDNF.
Se han llevado a cabo diversos intentos fallidos para la obtención de GDNF humano glicosilado utilizando células BHK transfectadas con el gen de hGDNF y fibroblastos dérmicos humanos inmortalizados y transducidos con un vector lentiviral que contiene hGDNF (pCCL-WPS-hGDNF) . Unas cantidades insuficientes y rendimientos muy bajos del hGDNF obtenido, asi como la copurificación de las proteínas contaminantes IGFBP-5 o IGFBP-7, representan el principal inconveniente de estos métodos. IGFBP-5 e IGFBP-7 son proteínas de unión a factores de crecimiento del tipo insulina con un peso molecular de 30 kDa y un pl teórico de 8, 6 y 8, 3, respectivamente. Estas características son muy similares a las del dímero de hGDNF, dando lugar a un solapamiento de sus correspondientes picos en el cromatograma, haciendo por tanto que el aislamiento de hGDNF sea difícil. Various failed attempts have been made to obtain glycosylated human GDNF using BHK cells transfected with the hGDNF gene and human dermal fibroblasts immortalized and transduced with a lentiviral vector containing hGDNF (pCCL-WPS-hGDNF). Quantities Insufficient and very low yields of the hGDNF obtained, as well as the copurification of the IGFBP-5 or IGFBP-7 contaminating proteins, represent the main drawback of these methods. IGFBP-5 and IGFBP-7 are insulin-like growth factor binding proteins with a molecular weight of 30 kDa and a theoretical pl of 8, 6 and 8, 3, respectively. These characteristics are very similar to those of the hGDNF dimer, resulting in an overlap of their corresponding peaks in the chromatogram, thus making the isolation of hGDNF difficult.
Un objetivo de la presente invención es proporcionar métodos y medios que permitan la preparación de hGDNF glicosilado en rendimientos óptimos. An objective of the present invention is to provide methods and means that allow the preparation of glycosylated hGDNF in optimal yields.
Un objetivo de la presente invención es proporcionar métodos y medios que permitan la preparación de hGDNF glicosilado de una manera a escala industrial. Un objetivo de la presente invención es proporcionar métodos y medios que permitan la preparación de hGDNF glicosilado directamente en una forma pura. An objective of the present invention is to provide methods and means that allow the preparation of glycosylated hGDNF in an industrial scale manner. An object of the present invention is to provide methods and means that allow the preparation of glycosylated hGDNF directly in a pure form.
Un objetivo de la presente invención es proporcionar métodos y medios que permitan la preparación de hGDNF glicosilado habiendo eliminado posibles proteínas contaminantes. An objective of the present invention is to provide methods and means that allow the preparation of glycosylated hGDNF having eliminated possible contaminating proteins.
Blasey et al., 2000 describen la construcción del plásmido pSFVl-hCOX-2. COX-2, también conocida como ciclooxigenasa 2, es la enzima clave en la biosíntesis de prostaglandinas . Es una proteína citoplasmática . Blasey et al., 2000 describe the construction of plasmid pSFVl-hCOX-2. COX-2, also known as cyclooxygenase 2, is the key enzyme in the biosynthesis of prostaglandins. It is a cytoplasmic protein.
Lundstrom (Methods in Molecular Medicine, vol . 76: Viral Vectors for Gene Therapy: Methods and Protocols, Edited by: C. A. Machida © Humana Press Inc., Toto a, NJ) también proporciona ejemplos específicos de vectores SFV que comprenden una secuencia de nucleótidos que codifica para polipéptidos recombinantes , tales como el vector pSFV-receptor 5-HT3 de serotonina de ratón o pSFV-CAP-hNKIRhi s , donde el gen completo de la cápside está fusionado al gen del receptor de neuroquinina-1 humano (hNKl-R) . Lundstrom (Methods in Molecular Medicine, vol. 76: Viral Vectors for Gene Therapy: Methods and Protocols, Edited by: CA Machida © Humana Press Inc., Toto a, NJ) also provides specific examples of SFV vectors comprising a nucleotide sequence encoding polypeptides recombinants, such as the pSFV-5-HT3 mouse serotonin receptor vector or pSFV-CAP-hNKIRhi s, where the complete capsid gene is fused to the human neuroquinine-1 receptor gene (hNKl-R).
EP1386926A1 (Bioxtal) describe un vector de alfavirus que comprende una molécula de ácido nucleico o una construcción que comprende la secuencia de un genoma de alfavirus recombinante, dicho genoma del alfavirus recombinante (i) siendo deficiente en por lo menos un gen que codifica proteínas estructurales de alfavirus, (ii) comprendiendo secuencias codificantes y secuencias reguladoras de proteína no estructurales del alfavirus, y (iii) comprendiendo una secuencia de ácido nucleico que codifica el polipéptido. EP1386926A1 (Bioxtal) describes an alphavirus vector comprising a nucleic acid molecule or a construct comprising the sequence of a recombinant alphavirus genome, said recombinant alphavirus genome (i) being deficient in at least one gene encoding structural proteins of alphavirus, (ii) comprising coding sequences and non-structural protein regulatory sequences of the alphavirus, and (iii) comprising a nucleic acid sequence encoding the polypeptide.
Forsman et al., 2000 describe los vectores pSFVl-hUGTlA6 y pSFVl-hUGTlA9. Forsman et al., 2000 describes the vectors pSFVl-hUGTlA6 and pSFVl-hUGTlA9.
WO09/089040 (Jaffrey y Hengst) describe métodos para expresar proteínas en los axones de neuronas de mamíferos. WO09 / 089040 (Jaffrey and Hengst) describes methods for expressing proteins in the axons of mammalian neurons.
Los inventores han ideado un método para la expresión y purificación de hGDNF glicosilado que evita la producción de proteínas contaminantes. Este método permite la producción de hGDNF glicosilado con rendimientos y pureza superiores. El método es además adecuado para la producción a escala industrial del hGDNF. The inventors have devised a method for the expression and purification of glycosylated hGDNF that prevents the production of contaminating proteins. This method allows the production of glycosylated hGDNF with superior yields and purity. The method is also suitable for the industrial scale production of hGDNF.
Descripción resumida de la invención Summary Description of the Invention
La presente invención se refiere a un método para la producción de una proteína GDNF humano recombinante, o de una variante funcionalmente equivalente de la misma, que comprende:  The present invention relates to a method for the production of a recombinant human GDNF protein, or a functionally equivalent variant thereof, comprising:
a) proporcionar células eucariotas que comprenden un vector de expresión de alfavirus, comprendiendo dicho vector los ácidos nucleicos de i) una secuencia 5' capaz de dirigir la replicación del alfavirus; ii) una secuencia que codifica para proteínas no estructurales capaces de dirigir la replicación del ARN alfaviral; iii) un promotor subgenómico del alfavirus; iv) una secuencia que codifica una proteina GDNF humana recombinante, o una variante funcionalmente equivalente de la misma, unida operativamente al promotor subgenómico que dirige la expresión de la proteina en las células eucariotas; v) una secuencia 3' capaz de dirigir la replicación del alfavirus; a) providing eukaryotic cells comprising an alphavirus expression vector, said vector comprising the nucleic acids of i) a 5 'sequence capable of directing the replication of the alphavirus; ii) a sequence encoding non-structural proteins capable of directing the replication of alphaviral RNA; iii) a subgenomic promoter of the alphavirus; iv) a sequence encoding a recombinant human GDNF protein, or a functionally equivalent variant thereof, operatively linked to the subgenomic promoter that directs protein expression in eukaryotic cells; v) a 3 'sequence capable of directing the replication of the alphavirus;
b) cultivar o incubar dichas células eucariotas en un medio de cultivo hasta que se inhiba la síntesis de las proteínas celulares; b) culturing or incubating said eukaryotic cells in a culture medium until the synthesis of cellular proteins is inhibited;
c) eliminar el sobrenadante; c) remove the supernatant;
d) cultivar o incubar dichas células eucariotas en un medio de cultivo durante un periodo de tiempo, de manera que se consigue la expresión del GDNF recombinante, pero sin muerte celular; y d) culturing or incubating said eukaryotic cells in a culture medium for a period of time, so that the expression of the recombinant GDNF is achieved, but without cell death; Y
e) extraer la proteína GDNF recombinante del medio de cultivo. e) extract the recombinant GDNF protein from the culture medium.
La presente invención también se refiere a un vector de expresión de alfavirus tal como se ha definido anteriormente, una partícula alfaviral que comprende los ácidos nucleicos definidos anteriormente en forma de ARN, y una célula eucariota que comprende un vector de alfavirus según cualquiera de las realizaciones presentadas en este documento. La presente invención también se refiere a proteínas de fusión que comprenden la proteína de la cápside de SFV unida al GDNF humano, o una variante funcionalmente equivalente de la misma; o que comprende por lo menos los primeros 34 aminoácidos de la proteína de la cápside de SFV unidos a una proteasa de auto- escisión, ésta última unida además al GDNF humano, o una variante funcionalmente equivalente de la misma. The present invention also relates to an alphavirus expression vector as defined above, an alphaviral particle comprising the nucleic acids defined above in the form of RNA, and a eukaryotic cell comprising an alphavirus vector according to any of the embodiments presented in this document. The present invention also relates to fusion proteins comprising the SFV capsid protein bound to human GDNF, or a functionally equivalent variant thereof; or comprising at least the first 34 amino acids of the SFV capsid protein bound to a self-cleavage protease, the latter also bound to human GDNF, or a functionally equivalent variant thereof.
La presente invención también se refiere a una composición que comprende GDNF humano o una variante funcionalmente equivalente de GDNF en donde el GDNF se encuentra glicosilado y en donde la composición The present invention also relates to a composition comprising human GDNF or a functionally equivalent variant of GDNF wherein the GDNF is glycosylated and wherein the composition
(i) comprende un porcentaje de GDNF en peso con respecto al total de proteína en la composición superior a 90% y/o (i) comprises a percentage of GDNF by weight with with respect to the total protein in the composition greater than 90% and / or
(ii) se encuentra sustancialmente libre de IGFBP-4,  (ii) is substantially free of IGFBP-4,
IGFBP-5 y/o IGFBP-7.  IGFBP-5 and / or IGFBP-7.
Adicionalmente , la invención se refiere a una composición de acuerdo a la invención para su uso en medicina así como para su uso en el tratamiento o la prevención de un trastorno neurodegenerativo . Additionally, the invention relates to a composition according to the invention for use in medicine as well as for use in the treatment or prevention of a neurodegenerative disorder.
Descripción de la invención Description of the invention
Vector viral de la invención  Viral vector of the invention
La presente invención se refiere a un vector de expresión de alfavirus que comprende los ácidos nucleicos de:  The present invention relates to an alphavirus expression vector comprising nucleic acids of:
- una secuencia 5' capaz de dirigir la replicación del alfavirus,  - a 5 'sequence capable of directing the replication of the alphavirus,
- una secuencia que codifica para proteínas no estructurales capaces de dirigir la replicación del ARN alfaviral,  - a sequence coding for non-structural proteins capable of directing the replication of alphaviral RNA,
- un promotor subgenómico (SG) del alfavirus,  - a subgenomic promoter (SG) of the alphavirus,
- una secuencia que codifica una proteína GDNF humana recombinante , o una variante funcionalmente equivalente de la misma, unida operativamente al promotor subgenómico que dirige la expresión de la proteína en un huésped de expresión adecuado ,  - a sequence encoding a recombinant human GDNF protein, or a functionally equivalent variant thereof, operably linked to the subgenomic promoter that directs the expression of the protein in a suitable expression host,
- una secuencia 3' capaz de dirigir la replicación del alfavirus .  - a 3 'sequence capable of directing the replication of the alphavirus.
El término "vector de expresión de alfavirus" se refiere a cualquier molécula de ácido nucleico que comprende un genoma de alfavirus recombinante que comprende una secuencia de ácido nucleico que codifica GDNF humana. La molécula de ácido nucleico puede ser un plásmido o un fragmento lineal, en forma de ADN o ARN de cadena única. Preferiblemente, la molécula de ácido nucleico es un ADN plasmídico o un fragmento lineal en forma de ARN. El término "vector de alfavirus" también incluye alfavirus recombinantes , es decir, partículas de alfavirus que comprenden una molécula de ácido nucleico tal como se ha descrito anteriormente. En una realización, el vector de expresión de alfavirus es aquel con la secuencia de SEC ID NO. 1. El vector de alfavirus puede tener diferentes orígenes, virus de Aura, virus de Babanki, virus de Barmah Forest, virus de Bebaru, virus de Buggy Creek, virus de Chikungunya, virus de encefalitis equina del este, virus de Everglades, virus de Fort Morgan, virus de Getah, virus de Highlands J, virus de Kyzylagach, virus de Mayaro, virus de Mi dde lburg , virus de Mucambo, virus de Ndumu, virus de O ' Nyong-Nyong, virus de Pixuna, virus de Ross River, virus de Sagiyama, virus de Semliki Forest, virus de Sindbis, Arbovirus de Sudáfrica No. 86, virus de Una, virus de encefalitis equina venezolana, virus de encefalitis equina del oeste y virus de Whataroa. The term "alphavirus expression vector" refers to any nucleic acid molecule that comprises a recombinant alphavirus genome that comprises a nucleic acid sequence encoding human GDNF. The nucleic acid molecule can be a plasmid or a linear fragment, in the form of single stranded DNA or RNA. Preferably, the nucleic acid molecule is a plasmid DNA or a linear fragment in the form of RNA. The term "alphavirus vector" also includes recombinant alphaviruses, that is, alphavirus particles that comprise a nucleic acid molecule as described above. In one embodiment, the alphavirus expression vector is one with the sequence of SEQ ID NO. 1. The alphavirus vector can have different origins, Aura virus, Babanki virus, Barmah Forest virus, Bebaru virus, Buggy Creek virus, Chikungunya virus, Eastern equine encephalitis virus, Everglades virus, Fort Morgan, Getah virus, Highlands J virus, Kyzylagach virus, Mayaro virus, Mi dde lburg virus, Mucambo virus, Ndumu virus, O'Neong-Nyong virus, Pixuna virus, Ross River virus , Sagiyama virus, Semliki Forest virus, Sindbis virus, South African arbovirus No. 86, Una virus, Venezuelan equine encephalitis virus, West equine encephalitis virus and Whataroa virus.
Preferiblemente, los vectores de alfavirus derivan del virus de Semliki Forest (SFV) (Liljestróm y Garoff (1991) virus de Sindbis (SIN) (Xiong et al. (1989) Science 243, 1188-1191), o virus de la encefalitis equina venezolana (VEE) (Pushko et al. (1997) Virology 239, 389-401) . Preferably, the alphavirus vectors are derived from the Semliki Forest virus (SFV) (Liljestróm and Garoff (1991) Sindbis virus (SIN) (Xiong et al. (1989) Science 243, 1188-1191), or equine encephalitis virus Venezuelan (VEE) (Pushko et al. (1997) Virology 239, 389-401).
La estructura y secuencia de genomas de alfavirus se conoce en la técnica anterior (véase, por ejemplo, la Patente de Estados Unidos No. 5.739.026, que se incorpora por referencia) . Brevemente, el genoma comprende secuencias que codifican proteínas no estructurales (nsPs), secuencias que codifican proteínas estructurales (por ejemplo, la cápside, proteínas de la envoltura, etc) , así como secuencias reguladoras necesarias para la replicación y empaquetamiento. The structure and sequence of alphavirus genomes is known in the prior art (see, for example, US Patent No. 5,739,026, which is incorporated by reference). Briefly, the genome comprises sequences that encode non-structural proteins (nsPs), sequences that encode structural proteins (e.g., the capsid, envelope proteins, etc.), as well as regulatory sequences necessary for replication and packaging.
Las principales secuencias reguladoras necesarias para la replicación se localizan en los extremos terminales del genoma (habitualmente en los primeros y últimos 250 nucleótidos) . En este aspecto, los términos "secuencia 5' capaz de dirigir la replicación del alfavirus" y "secuencia 3' capaz de dirigir la replicación del alfavirus" se refieren a estos extremos terminales del genoma. En particular, la secuencia 3' capaz de dirigir la replicación del alfavirus también incluye una secuencia terminal de poliadeninas (Poly A) . El término "una secuencia que codifica para proteínas no estructurales capaces de dirigir la replicación del ARN alfaviral" se refiere al poliprecursor nsPl-4, que es dividido posteriormente en cuatro proteínas separadas . El vector de alfavirus comprende además una región de promotor subgenómico (SG) , por ejemplo el promotor 26S, o un equivalente funcional del mismo. The main regulatory sequences necessary for replication are located at the terminal ends of the genome (usually in the first and last 250 nucleotides). In this aspect, the terms "sequence 5 'capable of directing the replication of the alphavirus" and "sequence 3' capable of directing the replication of the alphavirus" refer to these extremes genome terminals In particular, the 3 'sequence capable of directing the replication of the alphavirus also includes a terminal sequence of polyadenins (Poly A). The term "a sequence coding for non-structural proteins capable of directing the replication of alphaviral RNA" refers to the nsPl-4 polypeptide, which is subsequently divided into four separate proteins. The alphavirus vector further comprises a subgenomic promoter region (SG), for example the 26S promoter, or a functional equivalent thereof.
El término "secuencias que codifican para el GDNF recombinante humano" se refiere a la secuencias de nucleótidos que codifican para el factor neurotrófico derivado de la glia humana, también conocido como ATF1; ATF2; HFB1-GDNF. The term "sequences encoding human recombinant GDNF" refers to the nucleotide sequences encoding the neurotrophic factor derived from human glia, also known as ATF1; ATF2; HFB1-GDNF.
El número de acceso para las secuencias de referencias genómicas de la secuencia génica de GDNF, derivado de Homo Sapiens es NG_011675.1 RefSeqGene. The access number for the genomic reference sequences of the GDNF gene sequence, derived from Homo Sapiens is NG_011675.1 RefSeqGene.
El número de acceso para el ARNm y las secuencias de referencia de la proteína de la secuencia génica de GDNF, derivados de Homo Sapiens son: The access number for the mRNA and the GDNF gene sequence protein reference sequences derived from Homo Sapiens are:
NM_000514.2→NP_000505.1 preproteína de la isoforma 1 del factor neurotrófico derivado de la glia (SEC ID NO. 3)  NM_000514.2 → NP_000505.1 glia-derived neurofrophic factor 1 isoform preprotein (SEQ ID NO. 3)
NM_199231.1→NP_954701.1 precursor de la isoforma 2 del factor neurotrófico derivado de la glia (SEC ID NO. 4)  NM_199231.1 → NP_954701.1 precursor to glia-derived neurotrophic factor 2 (SEQ ID NO. 4)
- NM_199234.1→NP_954704.1 isoforma 2 del factor neurotrófico derivado de la glia (SEC ID NO. 5) . - NM_199234.1 → NP_954704.1 isoform 2 of the glia-derived neurotrophic factor (SEQ ID NO. 5).
Los números de acceso indicados se pueden encontrar en la base de datos de genes disponible públicamente del National Center for Biotechnology Informatio n ( N C B I ) e n http : / / w .ncbi.nlm.nih. gov . Las secuencias de nucleótidos que codifican para el GDNF recombinante humano en la presente invención se pueden localizar en varias regiones del vector, siempre y cuando dicha secuencia no evite la replicación o empaquetamiento del vector. Preferiblemente, las secuencias de nucleótidos que codifican para el GDNF recombinante humano en la presente invención se localizan en posición 3' de las secuencias codificantes no estructurales, más preferiblemente en posición 3' del promotor subgenómico (SG) y su expresión está controlada por dicho promotor SG. The indicated access numbers can be found in the publicly available gene database of the National Center for Biotechnology Informatio n (NCBI) at http: / / w .ncbi.nlm.nih. gov. The nucleotide sequences encoding the human recombinant GDNF in the present invention can be located in various regions of the vector, as long as said sequence does not prevent replication or packaging of the vector. Preferably, the nucleotide sequences encoding the human recombinant GDNF in the present invention are located at the 3 'position of the non-structural coding sequences, more preferably at the 3' position of the subgenomic promoter (SG) and their expression is controlled by said promoter. SG.
El término "una variante funcionalmente equivalente de la misma" se refiere a una molécula, que es funcionalmente similar a la proteina GDNF completa o a un fragmento de la misma. Se pueden preparar de forma práctica variantes de proteínas mediante modificación química de la proteína obtenida según los métodos de la presente invención, utilizando métodos conocidos en la técnica. Naturalmente, dicha variante tendrá una unión al receptor y actividad de señalización intracelular similares a la correspondiente proteína natural. Métodos adecuados para determinar si una variante de GDNF se puede considerar como variante funcionalmente equivalente incluye, por ejemplo, la medida de la capacidad de dicha variante de promover el crecimiento de neuritas en células PC12 en cultivo tal y como se describe en el ejemplo 3.6 de la presente invención o la medida de la capacidad de promover la recaptación de dopamina con alta afinidad por neuronas dopaminérgicas del mesencéfalo tal y como ha sido descrito por WO9306116 o la medida de la capacidad de la variante de promover la supervivencia de células del sistema nervioso simpático y parasimpático tal y como se describe en WO9306116. The term "a functionally equivalent variant thereof" refers to a molecule, which is functionally similar to the complete GDNF protein or a fragment thereof. Protein variants can be practically prepared by chemical modification of the protein obtained according to the methods of the present invention, using methods known in the art. Naturally, said variant will have a receptor binding and intracellular signaling activity similar to the corresponding natural protein. Suitable methods for determining whether a variant of GDNF can be considered as a functionally equivalent variant includes, for example, the measure of the ability of said variant to promote the growth of neurites in PC12 cells in culture as described in Example 3.6 of the present invention or the measure of the ability to promote the reuptake of dopamine with high affinity for dopaminergic neurons of the midbrain as described by WO9306116 or the measure of the ability of the variant to promote the survival of cells of the sympathetic nervous system and parasympathetic as described in WO9306116.
Alternativamente, las variantes de proteínas se pueden obtener utilizando el vector de expresión de alfavirus donde la secuencia que codifica para hGDNF se modifica convenientemente a nivel de su secuencia de bases, y posteriormente se expresa la correspondiente variante de proteína. Las variaciones en la estructura primaria de la proteína, así como las variaciones en niveles más elevados de organización estructural, por ejemplo, en el tipo de enlaces covalentes que unen los residuos de aminoácidos o la adición de grupos a los residuos terminales de la proteína, se encuentran dentro del alcance de la presente invención. Además, las proteínas pueden incluir alteraciones conservativas y no conservativas en la secuencia de aminoácidos que dan lugar a cambios silenciosos que mantienen la funcionalidad de la molécula incluyendo, por ejemplo, deleciones, adiciones y sustituciones. Dichas moléculas alteradas pueden ser deseables cuando proporcionen ciertas ventajas en su uso. Tal como se utilizan en la presente invención, las sustituciones conservativas implicarían la sustitución de uno o más aminoácidos en la secuencia de la correspondiente proteína por otro aminoácido que tenga la misma po l a r i dad y c a ra ct e r í s t i ca s pa re c i da s de hidrofobicidad/hidrofilicidad dando lugar a una molécula funcionalmente equivalente. Dichas sustituciones conservativas incluyen, pero sin limitación, sustituciones en los siguientes grupos de aminoácidos: glicina, alanina; valina, isoleucina, leucina; ácido aspártico, ácido glutámico; asparragina, glutamina; serina, treonina; lisina, arginina, histidina; fenilalanina, tirosina; y metionina. Alternatively, protein variants can be obtained using the alphavirus expression vector where the sequence encoding hGDNF is conveniently modified at the level of its base sequence, and subsequently the corresponding protein variant is expressed. Variations in the primary structure of the protein, as well as variations in higher levels of structural organization, for example, in the type of covalent bonds that bind amino acid residues or the addition of groups to the terminal residues of the protein, are within the scope of the present invention. In addition, proteins may include conservative and non-conservative alterations in the amino acid sequence that result in silent changes that maintain the functionality of the molecule including, for example, deletions, additions and substitutions. Such altered molecules may be desirable when they provide certain advantages in their use. As used in the present invention, conservative substitutions would imply the substitution of one or more amino acids in the sequence of the corresponding protein with another amino acid having the same potency and ra ct er í sti ca s pa re ci da s of hydrophobicity / hydrophilicity giving rise to a functionally equivalent molecule. Such conservative substitutions include, but are not limited to, substitutions in the following amino acid groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine, histidine; phenylalanine, tyrosine; and methionine.
Variantes de GDNF adecuadas para su uso en la presente invención comprenden aquellas que tienen al menos un 80%, al menos un 85%, al menos un 90%, al menos un 91%, al menos un 92%, al menos un 93%, al menos un 94%, al menos un 95%, al menos un 96%, al menos un 97%, al menos un 98% o al menos un 99% de identidad con cualquiera de las secuencias de GDNF de origen humano mencionadas anteriormente a lo largo de la totalidad de la secuencia y, en concreto, con la isoforma 1 de GDNF NP_000505.1) , con la isoforma 2 (NP_954701.1 o NP_954704.1) de GDNF precursor de la isoforma 2 del factor neurotrófico derivado de la glia. El grado de identidad entre dos polipéptidos se determina usando algoritmos de ordenador y métodos que son ampliamente conocidos por los expertos en la materia. La identidad entre dos secuencias de aminoácidos se determina preferiblemente usando el algoritmo BLASTP [BLASTManual , Altschul, S. et al., NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990)] . Variants of GDNF suitable for use in the present invention comprise those having at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93% , at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with any of the GDNF sequences of human origin mentioned above throughout the entire sequence and, in particular, with isoform 1 of GDNF NP_000505.1), with isoform 2 (NP_954701.1 or NP_954704.1) of GDNF precursor to isoform 2 of neurotrophic factor derived from the glia. The degree of identity between two polypeptides is determined using computer algorithms and methods that are widely known to those skilled in the art. The identity between two amino acid sequences is preferably determined using the BLASTP algorithm [BLASTM Annual, Altschul, S. et al., NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990)].
Las variantes en las secuencias de aminoácidos de la proteina definida anteriormente se pueden preparar mediante mutaciones en los ácidos nucleicos que codifican los derivados sintetizados. Dichas variantes incluyen, por ejemplo, deleciones, inserciones o sustituciones de residuos en la secuencia de aminoácidos. Cualquier combinación de deleción, inserción y sustitución también se puede realizar para conseguir la construcción final, siempre y cuando la construcción final posea la actividad deseada. Obviamente, las mutaciones que se realizarán en el ácido nucleico que codifica la variante de proteina no deben alterar la fase de lectura y, preferiblemente, no crearán regiones complementarias que podrían producir una estructura secundaria de ARNm. Variants in the amino acid sequences of the protein defined above can be prepared by mutations in the nucleic acids encoding synthesized derivatives. Such variants include, for example, deletions, insertions or substitutions of residues in the amino acid sequence. Any combination of deletion, insertion and substitution can also be performed to achieve the final construction, as long as the final construction possesses the desired activity. Obviously, the mutations that will be made in the nucleic acid encoding the protein variant should not alter the reading phase and, preferably, will not create complementary regions that could produce a secondary mRNA structure.
A nivel genético, estas variantes se preparan normalmente mediante mutagénesis dirigida de nucleótidos en el ADN que codifica la molécula de la proteína, produciendo de este modo el ADN que codifica la variante, y, a continuación, expresando el ADN (o ARN) en el cultivo de células recombinantes . Las variantes muestran normalmente la misma actividad biológica cualitativa que la proteína no variante. At the genetic level, these variants are normally prepared by directed mutagenesis of nucleotides in the DNA encoding the protein molecule, thereby producing the DNA encoding the variant, and then expressing the DNA (or RNA) in the recombinant cell culture. Variants normally show the same qualitative biological activity as the non-variant protein.
Un "análogo" de las proteínas definidas anteriormente, según la presente invención, se refiere a una molécula no natural, que es sustancialmente similar a las moléculas completas o a un fragmento activo de las mismas. Dicho análogo mostraría la misma actividad que la correspondiente proteína natural. Un "fragmento" según la presente invención se refiere a cualquier subgrupo de moléculas, es decir, una proteína más corta, que mantiene la actividad biológica deseada. Los fragmentos se pueden preparar fácilmente mediante la eliminación de aminoácidos de cualquiera de los extremos de la molécula y el análisis en el resultado de sus propiedades como agonistas del receptor. Las proteasas para eliminar a la vez un aminoácido de cualquiera de los extremos N-terminal o C-terminal de un polipéptido son conocidas en la técnica. An "analog" of the proteins defined above, according to the present invention, refers to an unnatural molecule, which is substantially similar to the whole molecules or to an active fragment thereof. Said analog would show the same activity as the corresponding natural protein. A "fragment" according to the present invention refers to any subset of molecules, that is, a shorter protein, which maintains the desired biological activity. The Fragments can be easily prepared by removing amino acids from any of the ends of the molecule and analyzing the result of their properties as receptor agonists. Proteases to simultaneously remove an amino acid from any of the N-terminal or C-terminal ends of a polypeptide are known in the art.
Los vectores alfavirus de la presente invención pueden carecer de por lo menos un ácido nucleico funcional que codifica una proteina de alfavirus estructural seleccionada entre C, El, p62 y 6K. Las secuencias génicas de las proteínas estructurales se pueden convertir en no funcionales mediante, por ejemplo, una mutación o mutaciones, una inserción o inserciones o una deleción o deleciones, o una combinación de los mismos. Preferiblemente, las secuencias génicas de las proteínas estructurales se convierten en no funcionales mediante deleción, es decir, el vector de alfavirus recombinante se encuentra total o parcialmente ausente. De este modo, los vectores de alfavirus más utilizados carecen del ácido nucleico que codifica por lo menos una, preferiblemente todas las proteínas estructurales de alfavirus seleccionadas entre C, El, p62, y 6K. Los vectores de alfavirus deberían comprender, sin embargo, las secuencias reguladoras 5' y 3' necesarias para una replicación viral y empaquetamiento eficaces. The alphavirus vectors of the present invention may lack at least one functional nucleic acid encoding a structural alphavirus protein selected from C, El, p62 and 6K. The gene sequences of the structural proteins can be made non-functional by, for example, a mutation or mutations, an insertion or insertions or a deletion or deletions, or a combination thereof. Preferably, the gene sequences of the structural proteins become non-functional by deletion, that is, the recombinant alphavirus vector is totally or partially absent. Thus, the most commonly used alphavirus vectors lack the nucleic acid encoding at least one, preferably all the alphavirus structural proteins selected from C, El, p62, and 6K. The alphavirus vectors should, however, comprise the 5 'and 3' regulatory sequences necessary for effective viral replication and packaging.
Alternativamente, el vector de expresión de alfavirus puede comprender regiones que codifican algunas proteínas estructurales de alfavirus, tales como una secuencia que codifica una proteína con actividad potenciadora de traducción. Alternatively, the alphavirus expression vector may comprise regions encoding some structural proteins of alphavirus, such as a sequence encoding a protein with translation enhancing activity.
En una realización, la secuencia que codifica para una proteína con una actividad potenciadora de la traducción es la secuencia que codifica la cápside del virus de Semliki Forest (SFV) que comprende por lo menos los primeros 34 aminoácidos de la misma (Bl) . In one embodiment, the sequence that codes for a protein with a translation-enhancing activity is the sequence that encodes the capsid of the Semliki Forest virus (SFV) comprising at least the first 34 amino acids thereof (Bl).
Esta secuencia con una actividad potenciadora de la traducción es un ácido nucleico que puede unirse a un activador, por ejemplo, un factor de traducción, para aumentar el nivel de traducción. En el contexto de la presente invención se puede utilizar cualquier potenciador de la traducción del gen adecuado. A modo de ilustración, dicho potenciador puede ser el potenciador mínimo de traducción de SFV "Bl" que comprende la secuencia de nucleótidos que codifica los primeros 34 aminoácidos de la cápside de SFV. En una realización, el vector de expresión de alfavirus comprende además una secuencia que codifica una proteasa de auto-escisión o una secuencia diana para una proteasa celular. This sequence with a translation-enhancing activity it is a nucleic acid that can be linked to an activator, for example, a translation factor, to increase the level of translation. In the context of the present invention, any suitable gene translation enhancer can be used. By way of illustration, said enhancer may be the minimum SFV translation enhancer "Bl" comprising the nucleotide sequence encoding the first 34 amino acids of the SFV capsid. In one embodiment, the alphavirus expression vector further comprises a sequence encoding a self-cleavage protease or a target sequence for a cellular protease.
Esta secuencia, cuando se traduce, proporciona un sitio de escisión mediante el cual la proteína expresada o la proteína fusionada, tal como se describe posteriormente, se procesa de manera postraduccional o cotraduccional en la proteína final. This sequence, when translated, provides a cleavage site whereby the expressed protein or the fused protein, as described below, is processed post-translationally or cotraductionally in the final protein.
En el contexto de la presente invención, cualquier secuencia de nucleótidos que codifica un sitio de escisión auto-proteolítico postraduccional, y consecuentemente la auto-p r o t e a s a o la secuencia de aminoácidos o péptido codificada por dicha secuencia de nucleótidos. En una realización, la secuencia que codifica una proteasa de auto-escisión o la secuencia diana para una proteasa celular es la proteasa 2A del virus de la fiebre aftosa (FMDV) , o autoproteasa 2A de FMDV. En otra realización, dicha secuencia comprende la secuencia de nucleótidos que codifica el dominio carboxi-t e r m i n a 1 de la cápside de SFV con actividad p r o t e o 1 i t i c a . El uso de estos sitios de ruptura auto- proteolíticos postraduccionales se ha descrito previamente en la solicitud de Patente Europea EP 736099 y también por Ryan y Drew (1994), particularmente el uso de la secuencia que codifica la región 2A de la proteína de FMDV (autoproteasa 2A de FMDV) , el contenido completo de la cual se incluye por referencia. En una realización, la secuencia que codifica una proteasa de auto-escisión o la secuencia diana para una proteasa celular se expresa en fase con la secuencia con actividad potenciadora de la traducción (Bl) . In the context of the present invention, any nucleotide sequence encoding a post-translational auto-proteolytic cleavage site, and consequently the auto-p roteasao the amino acid sequence or peptide encoded by said nucleotide sequence. In one embodiment, the sequence encoding a self-cleavage protease or the target sequence for a cellular protease is FMDV 2A protease (FMDV), or FMDV 2A autoprotease. In another embodiment, said sequence comprises the nucleotide sequence encoding the carboxy-t-eminin 1 domain of the SFV capsid with protein 1 activity. The use of these post-translational auto-proteolytic disruption sites has been previously described in European Patent Application EP 736099 and also by Ryan and Drew (1994), particularly the use of the sequence encoding region 2A of the FMDV protein ( FMDV self-protection 2A), the complete content of which is included by reference. In one embodiment, the sequence encoding a self-cleavage protease or the target sequence for a cellular protease is expressed in phase with the sequence with translation enhancing activity (Bl).
En una realización, el vector de expresión de alfavirus comprende además una secuencia que codifica una proteasa de auto-escisión que actúa en cis. Alternativamente, la secuencia de nucleótidos codifica un sitio de escisión para una proteasa que actúa en trans; en este caso, dicha proteasa podría ser expresada por la célula transfectada con el vector viral de la presente invención, de forma nativa o r e c omb i n a n t e , o alternativamente, dicha proteasa se podría añadir de manera exógena para liberar el GDNF o una variante de la proteína de fusión. En el contexto de la presente invención, se puede utilizar cualquier secuencia de nucleótidos que codifica un sitio de escisión para una proteasa que actúa en trans, y consecuentemente la secuencia de aminoácidos codifica para dicha secuencia. A modo de ilustración no limitante, dicha secuencia de nucleótidos que codifica un sitio de escisión de una proteasa que actúa en trans puede ser una secuencia de nucleótidos que codifica una secuencia de aminoácidos que puede ser escindida por una endopeptidasa, etc. A modo de ilustración no limitante, dicha secuencia de nucleótidos que codifica un sitio de escisión para una proteasa que actúa en trans es una secuencia de nucleótidos que codifica un sitio de escisión para una proteasa de virus, un potyvirus, por ejemplo, tal como el virus del grabado del tabaco (ETV) , etc., y dicha proteasa puede ser expresada por la célula transfectada con el vector viral de la invención (de forma nativa o porque ha sido transformada de forma adecuada), etc. In one embodiment, the alphavirus expression vector further comprises a sequence encoding a cis-cleaving auto-cleavage protease. Alternatively, the nucleotide sequence encodes a cleavage site for a trans-acting protease; in this case, said protease could be expressed by the cell transfected with the viral vector of the present invention, natively, or alternatively, said protease could be added exogenously to release the GDNF or a variant of the protein of fusion. In the context of the present invention, any nucleotide sequence encoding a cleavage site for a trans-acting protease can be used, and consequently the amino acid sequence encodes said sequence. By way of non-limiting illustration, said nucleotide sequence encoding a cleavage site of a trans-acting protease can be a nucleotide sequence encoding an amino acid sequence that can be cleaved by an endopeptidase, etc. By way of non-limiting illustration, said nucleotide sequence encoding a cleavage site for a trans-acting protease is a nucleotide sequence encoding a cleavage site for a virus protease, a potyvirus, for example, such as tobacco etching virus (ETV), etc., and said protease can be expressed by the cell transfected with the viral vector of the invention (natively or because it has been properly transformed), etc.
Alternativamente, dicho sitio de escisión puede ser reconocido por un reactivo químico, por ejemplo, bromuro de cianógeno, para la escisión en los residuos de metionina, etc. Alternatively, said cleavage site may be recognized by a chemical reagent, for example, cyanogen bromide, for cleavage in methionine residues, etc.
En una realización, la secuencia de nucleótidos para el GDNF recombinante humano, o una variante funcionalmente equivalente de la misma, se fusiona en fase y cadena abajo de la secuencia que codifica para la proteasa de auto-escisión o la secuencia diana para una proteasa celular. In one embodiment, the nucleotide sequence for the GDNF Human recombinant, or a functionally equivalent variant thereof, is fused in phase and downstream of the sequence encoding the self-cleavage protease or the target sequence for a cellular protease.
Cuando el vector se utiliza en forma de ADN, el vector completo comprende un promotor funcional en eucariotas, particularmente un promotor que es reconocible por una ARN polimerasa eucariota, tal como un promotor de citomegalovirus (CMV) y una secuencia señal de terminación de la transcripción, una secuencia señal derivada de SV40, por ejemplo. De este modo, el vector es transcrito a ARN en el interior de las células transfectadas donde será auto-amplificado. De este modo, en una realización, el vector de expresión de alfavirus comprende además un promotor que es reconocido por una ARN polimerasa eucariota. When the vector is used in the form of DNA, the complete vector comprises a functional promoter in eukaryotes, particularly a promoter that is recognizable by a eukaryotic RNA polymerase, such as a cytomegalovirus (CMV) promoter and a transcription termination signal sequence , a signal sequence derived from SV40, for example. In this way, the vector is transcribed to RNA inside the transfected cells where it will be self-amplified. Thus, in one embodiment, the alphavirus expression vector further comprises a promoter that is recognized by a eukaryotic RNA polymerase.
En una realización, el promotor reconocible por una ARN polimerasa eucariota es el promotor de citomegalovirus (CMV) . In one embodiment, the promoter recognizable by a eukaryotic RNA polymerase is the cytomegalovirus (CMV) promoter.
El tamaño o longitud total del vector de alfavirus recombinante debe ser compatible para el empaquetamiento en partículas de alfavirus infecciosas. Más preferiblemente, no deberían sobrepasar más del 20% del tamaño de un genoma de alfavirus natural . The total size or length of the recombinant alphavirus vector must be compatible for packaging into infectious alphavirus particles. More preferably, they should not exceed more than 20% of the size of a natural alphavirus genome.
Las construcciones de ARN o ADN para preparar el vector viral de la invención se pueden obtener mediante métodos convencionales de biología molecular incluidos en los manuales generales de laboratorio, por ejemplo, en "Molecular cloning: a laboratory manual" (Joseph Sambrook, David W. Russel Eds . 2001, 3a ed. Cold Spring Harbor, New York) o en "Current protocols in molecular biology" (F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. A. Smith, J. G. Seidman y K. Struhl Eds, vol . 2. Greene Publishing Associates and Wiley Interscience, New York, N. Y. Actualizado a septiembre del 2006. Los alfavirus o genomas de alfavirus o fragmentos de los mismos se pueden obtener mediante diversas técnicas y de diversas fuentes. Se pueden sintetizar artificialmente, clonar a partir de plásmidos o de virus aislados por RT-PCR, o derivarse o purificar directamente a partir de muestras de virus depositadas en bibliotecas . The RNA or DNA constructs to prepare the viral vector of the invention can be obtained by conventional molecular biology methods included in the general laboratory manuals, for example, in "Molecular cloning: a laboratory manual" (Joseph Sambrook, David W. Russel Eds. 2001, 3rd ed. Cold Spring Harbor, New York) or in "Current protocols in molecular biology" (FM Ausubel, R. Brent, RE Kingston, DD Moore, JA Smith, JG Seidman and K. Struhl Eds, vol 2. Greene Publishing Associates and Wiley Interscience, New York, NY Updated September 2006. The alphavirus or alphavirus genomes or fragments thereof can be obtained by various techniques and from various sources. They can be artificially synthesized, cloned from plasmids or viruses isolated by RT-PCR, or derived or purified directly from virus samples deposited in libraries.
En una forma preferida de realización, el vector de expresión alfaviral de la invención es un vector citopático. El término "citopático", según se usa en la presente invención, se refiere a que es capaz de inducir una serie de cambios morfológicos o funcionales en la célula como consecuencia de la infección viral y que se manifiestan como redondeamiento celular, separación del sustrato, lisis celular, formación de sincitios, formación de cuerpos de inclusión o parada de la síntesis de proteínas endógenas. La citopatogenicidad de un vector puede determinarse de manera rutinaria por un experto usando cualquier método conocido en el estado de la técnica incluyendo la observación directa de las células tras la puesta en contacto de las mismas con un colorante vital, como por ejemplo el metil violeta, tal y como se describe en la solicitud de patente WO2008065225. Preferiblemente, el efecto citopático del vector de expresión alfaviral resulta en efecto citopático tras un periodo determinado de incubación de las células con dicho vector en al menos un 80%, al menos un 85%, al menos un 90%, al menos un 95% de las células. In a preferred embodiment, the alphaviral expression vector of the invention is a cytopathic vector. The term "cytopathic", as used in the present invention, refers to the fact that it is capable of inducing a series of morphological or functional changes in the cell as a result of viral infection and that they manifest as cell rounding, substrate separation, cell lysis, syncytium formation, formation of inclusion bodies or stopping the synthesis of endogenous proteins. The cytopathogenicity of a vector can be determined routinely by an expert using any method known in the state of the art including direct observation of the cells after contacting them with a vital dye, such as methyl violet, as described in patent application WO2008065225. Preferably, the cytopathic effect of the alphaviral expression vector results in cytopathic effect after a certain period of incubation of the cells with said vector in at least 80%, at least 85%, at least 90%, at least 95% of the cells.
Alternativamente, el efecto citopático se determina mediante la medida de la inhibición en la capacidad de la célula de sintetizar proteínas endógenas tras la infección con el virus o transfección con el vector viral. Preferiblemente, la medida de la inhibición de la capacidad de la célula de sintetizar proteínas endógenas se lleva a cabo mediante un método tal y como se describe en el ejemplo 3 de la presente invención en donde la inhibición en la síntesis de las proteínas endógenas se determina mediante la medida en el medio de cultivo de una proteína secretada de forma que se considera que un vector tiene efecto citopático cuando los niveles de dicha proteína secretada son de un 20%, un 15%, un 10%, un 5%, un 4%, un 3%, un 2% o un 1% con respecto a los niveles producidos por células que no han sido infectadas con el vector. En una forma preferida de realización, dicha proteína secretada es IGFBP-4, IGFBP-5 o IGFBP-7. Alternatively, the cytopathic effect is determined by measuring the inhibition in the cell's ability to synthesize endogenous proteins after infection with the virus or transfection with the viral vector. Preferably, the measure of the inhibition of the ability of the cell to synthesize endogenous proteins is carried out by a method as described in example 3 of the present invention wherein the inhibition in the synthesis of endogenous proteins is determined by measuring in the culture medium of a secreted protein so that a vector is considered to have a cytopathic effect when the levels of said secreted protein are 20%, 15%, 10%, 5%, 4%, 3%, 2% or 1% with respect to the levels produced by cells that have not been infected with the vector. In a preferred embodiment, said secreted protein is IGFBP-4, IGFBP-5 or IGFBP-7.
Células eucariotas Eukaryotic cells
La presente invención también se refiere a células eucariotas que comprenden un vector de alfavirus según cualquiera de las realizaciones presentadas en la presente invención. The present invention also relates to eukaryotic cells comprising an alphavirus vector according to any of the embodiments presented in the present invention.
Diversas células eucariotas pueden ser transformadas de manera eficaz por el vector de expresión de alfavirus, en particular de SFV. Various eukaryotic cells can be efficiently transformed by the alphavirus expression vector, in particular of SFV.
El término "células eucariotas que comprenden un vector de expresión de alfavirus" se refiere a, y sin limitación: The term "eukaryotic cells comprising an alphavirus expression vector" refers to, and without limitation:
- células huésped eucariotas transíectadas con el vector de expresión de alfavirus en forma de ADN o ARN tal como se definen en cualquiera de las realizaciones presentadas en la presente invención,  - eukaryotic host cells transcribed with the alphavirus expression vector in the form of DNA or RNA as defined in any of the embodiments presented in the present invention,
células huésped eucariotas infectadas con partículas virales generadas a partir del vector de expresión de alfavirus tal como se definen en cualquiera de las realizaciones presentadas en la presente invención.  eukaryotic host cells infected with viral particles generated from the alphavirus expression vector as defined in any of the embodiments presented in the present invention.
La población celular o línea celular a utilizar en la presente invención pueden comprender células de mamífero, tales como glóbulos rojos, células epiteliales, células endoteliales , fibroblastos, hepatocitos, neuronas, células gliales, etc. Las células se establecen preferiblemente como líneas celulares que se pueden cultivar y almacenar. Las células pueden ser de diversos orígenes de mamífero, incluyendo humano, roedor, bovino, porcino, canino, etc. Las células preferidas son de origen humano o roedor (por ejemplo, murino, rata o hámster) . Ejemplos típicos de dichas células incluyen BHK-21, CHO-K1, HEK293, VERO, y células de glioma C6. Debe entenderse que en la presente invención se puede utilizar cualquier otra célula de mamífero . The cell population or cell line to be used in the present invention may comprise mammalian cells, such as red blood cells, epithelial cells, endothelial cells, fibroblasts, hepatocytes, neurons, glial cells, etc. The cells are preferably established as cell lines that can be cultured and stored. The cells can be of various mammalian origins, including human, rodent, bovine, pig, canine, etc. Preferred cells are of human or rodent origin (eg, murine, rat or hamster). Typical examples of such cells include BHK-21, CHO-K1, HEK293, VERO, and C6 glioma cells. It should be understood that any other mammalian cell can be used in the present invention.
Proteínas de fusión Fusion proteins
La presente invención se refiere además a una proteína de fusión que comprende la proteína de la cápside de SFV unida a la proteína GDNF humana, o una variante funcionalmente equivalente de la misma.  The present invention further relates to a fusion protein comprising the SFV capsid protein bound to the human GDNF protein, or a functionally equivalent variant thereof.
En una realización, la proteína de fusión comprende por lo menos los primeros 34 aminoácidos de la proteína de la cápside de SFV unida a una proteasa de auto-escisión, ésta última unida además a la proteína GDNF humana, o una variante funcionalmente equivalente de la misma. In one embodiment, the fusion protein comprises at least the first 34 amino acids of the SFV capsid protein bound to a self-cleavage protease, the latter also bound to the human GDNF protein, or a functionally equivalent variant of the same.
Dichas proteínas de fusión se pueden obtener a partir de construcciones de alfavirus, en las que: Such fusion proteins can be obtained from alphavirus constructs, in which:
- la secuencia de nucleótidos que codifica para el GDNF recombinante humano, o una variante f u n c i o n a 1 me n t e equivalente del mismo, se fusiona en posición 3' , y manteniendo la fase de lectura, con la secuencia que codifica para la proteasa de auto-escisión o la secuencia diana para una proteasa celular; - the nucleotide sequence that encodes the human recombinant GDNF, or a variant works 1 equivalent to it, is fused in 3 ' position, and maintaining the reading phase, with the sequence encoding the self-cleavage protease or the target sequence for a cellular protease;
- la secuencia de nucleótidos que codifica para el GDNF recombinante humano, o una variante funcionalmente equivalente del mismo, se fusiona en posición 3' , y manteniendo la fase de lectura, con la secuencia que codifica para la proteasa de auto-escisión o la secuencia diana para una proteasa celular, ésta última fusionada en posición 3' y en fase con la secuencia que codifica para una proteína con una actividad potenciadora de la traducción ; - the nucleotide sequence encoding the human recombinant GDNF, or a functionally equivalent variant thereof, is fused at 3 ' position, and maintaining the reading phase, with the sequence encoding the self-cleavage protease or the sequence target for a cellular protease, the latter fused in 3 ' position and in phase with the sequence coding for a protein with a translation enhancing activity;
- la secuencia de nucleótidos que codifica para el GDNF recombinante humano, o una variante funcionalmente equivalente del mismo, se fusiona en posición 3' y manteniendo la fase de lectura con la secuencia que codifica para la proteasa de auto-escisión o la secuencia diana para una proteasa celular, ésta última fusionada en fase y en posición 3 ' con la secuencia que codifica la cápside del virus de Semliki Forest (SFV) que comprende por lo menos los primeros 34 aminoácidos de la misma. - the nucleotide sequence that encodes the human recombinant GDNF, or a functionally equivalent variant thereof, is fused in 3 ' position and maintaining the reading phase with the sequence that encodes for the self-cleavage protease or the target sequence for a cellular protease, the latter fused in phase and 3 ' position with the sequence encoding the capsid of the Semliki Forest virus (SFV) comprising at least the first 34 amino acids Of the same.
En una realización la proteina de fusión es la de la secuencia SEC ID NO. 2. Métodos para la producción de proteina hGDNF In one embodiment the fusion protein is that of the sequence SEQ ID NO. 2. Methods for the production of hGDNF protein
La presente invención se refiere a un método para la producción de una proteina GDNF recombinante humana, o de una variante funcionalmente equivalente de la misma, que comprende:  The present invention relates to a method for the production of a recombinant human GDNF protein, or a functionally equivalent variant thereof, comprising:
a) proporcionar células eucariotas que comprenden un vector de expresión de alfavirus, comprendiendo dicho vector los ácidos nucleicos de i) una secuencia 5' capaz de dirigir la replicación del alfavirus; ii) una secuencia que codifica para proteínas no estructurales capaces de dirigir la replicación del ARN alfaviral; iii) un promotor subgenómico del alfavirus; iv) una secuencia que codifica el GDNF humano recombinante, o una variante funcionalmente equivalente del mismo, unida operativamente al promotor subgenómico que dirige la expresión de la proteína en las células eucariotas; v) una secuencia 3' capaz de dirigir la replicación del alfavirus; a) providing eukaryotic cells comprising an alphavirus expression vector, said vector comprising the nucleic acids of i) a 5 'sequence capable of directing the replication of the alphavirus; ii) a sequence coding for non-structural proteins capable of directing the replication of alphaviral RNA; iii) a subgenomic promoter of the alphavirus; iv) a sequence encoding the recombinant human GDNF, or a functionally equivalent variant thereof, operably linked to the subgenomic promoter that directs protein expression in eukaryotic cells; v) a 3 'sequence capable of directing the replication of the alphavirus;
b) cultivar o incubar dichas células eucariotas en un medio de cultivo hasta que se inhiba la síntesis de las proteínas endógenas celulares; b) culturing or incubating said eukaryotic cells in a culture medium until the synthesis of cellular endogenous proteins is inhibited;
c) eliminar el sobrenadante; c) remove the supernatant;
d) cultivar o incubar dichas células eucariotas en un medio de cultivo durante un periodo de tiempo, de manera que se consigue la expresión del GDNF recombinante, pero sin muerte celular; y d) culturing or incubating said eukaryotic cells in a culture medium for a period of time, so that the expression of the recombinant GDNF is achieved, but without cell death; Y
e) purificar el GDNF recombinante del medio de cultivo. e) purify the recombinant GDNF from the culture medium.
En una realización, el método para la producción de GDNF recombinante humano, o de una variante funcionalmente equivalente del mismo, comprende además f) purificar el GDNF recombinante mediante cromatografía. In one embodiment, the method for the production of human recombinant GDNF, or a functionally variant equivalent thereof, it further comprises f) purifying the recombinant GDNF by chromatography.
La etapa (a) del método para la producción de una proteína GDNF recombinante humana, o de una variante funcionalmente equivalente de la misma comprende proporcionar células eucariotas que comprenden un vector de expresión de alfavirus. Los distintos componentes del vector de expresión de alfavirus se han definido en detalle anteriormente y se usan de la misma manera en relación con el método para la producción de una proteína recombinante humana. Step (a) of the method for the production of a recombinant human GDNF protein, or a functionally equivalent variant thereof, comprises providing eukaryotic cells comprising an alphavirus expression vector. The different components of the alphavirus expression vector have been defined in detail above and are used in the same manner in relation to the method for the production of a human recombinant protein.
La etapa (b) del método para la producción de una proteína GDNF recombinante humana, o de una variante f u n c i o n a 1 me n t e equivalente de la misma se lleva a cabo durante un tiempo suficiente para que se inhiba la síntesis de las proteínas celulares . Step (b) of the method for the production of a human recombinant GDNF protein, or of a variant f u n c i or n at 1 me n t and equivalent thereof is carried out for a time sufficient for the synthesis of cellular proteins to be inhibited.
La expresión "inhibición de la síntesis de proteínas celulares", según se usa en la presente invención, se refiere a que la célula pierde la capacidad de sintetizar proteínas codificadas por el propio genoma a expensas de las proteínas codificadas por el genoma viral. La inhibición de la síntesis de proteínas celulares puede ser determinada mediante métodos estándar conocidos por un experto, como por ejemplo, la determinación de los niveles o de la actividad de proteínas endógenas que aparecen de forma natural en el medio de cultivo tales como, por ejemplo, IGFBP-4, IGFBP-5 y/o IGFBP-7 o determinando la capacidad de extractos obtenidos de células infectadas de promover la traducción de un ARNm determinado o de una fracción de poli(A+) en comparación con extractos de células no infectadas, tal y como se describe en van Stegg et al. (J.Virol., 1981, 38:728-736) . La etapa (b) del método de la invención se mantiene el tiempo suficiente para que se produzca una inhibición de la síntesis de las proteínas endógenas de al menos un 50%, al menos un 60%, al menos un 70%, al menos un 80%, al menos un 90%, al menos un 95% o un 100% de inhibición con respecto a la síntesis en ausencia de infección viral. The term "inhibition of cellular protein synthesis", as used in the present invention, refers to the fact that the cell loses the ability to synthesize proteins encoded by the genome itself at the expense of proteins encoded by the viral genome. The inhibition of cell protein synthesis can be determined by standard methods known to an expert, such as the determination of the levels or activity of endogenous proteins that naturally appear in the culture medium such as, for example. , IGFBP-4, IGFBP-5 and / or IGFBP-7 or by determining the ability of extracts obtained from infected cells to promote the translation of a particular mRNA or a fraction of poly (A +) compared to non-infected cell extracts, as described in van Stegg et al. (J.Virol., 1981, 38: 728-736). Step (b) of the method of the invention is maintained long enough for an inhibition of the synthesis of endogenous proteins of at least 50%, at least 60%, at least 70%, at least one 80%, at least 90%, at least 95% or 100% inhibition with regarding synthesis in the absence of viral infection.
En una realización, en el método para la producción de GDNF recombinante humano, o de una variante f u n c i o n a 1 me n t e equivalente del mismo, el cultivo o la incubación de las etapas b) o d) se realiza a una temperatura entre 30 y 40° C durante un periodo de tiempo de entre 2 y 50 horas. En una realización aún más preferida, la etapa b) se lleva a cabo a una temperatura de 37 °C, preferiblemente durante 4 u 8 h. Alternativamente, la etapa b) se lleva a cabo a una temperatura de 33 °C, preferiblemente durante 4, 8, 12 o 24 h. En una realización aún más preferida, el cultivo o la incubación de la etapa b) se realiza a una temperatura de 33°C durante 8 horas. La etapa c) del método de la invención comprende la eliminación del sobrenadante del cultivo resultante de la etapa b) . In one embodiment, in the method for the production of human recombinant GDNF, or of a variant works 1 equivalent to it, the culture or incubation of steps b) or d) is carried out at a temperature between 30 and 40 ° C for a period of time between 2 and 50 hours. In an even more preferred embodiment, step b) is carried out at a temperature of 37 ° C, preferably for 4 or 8 h. Alternatively, step b) is carried out at a temperature of 33 ° C, preferably for 4, 8, 12 or 24 h. In an even more preferred embodiment, the culture or incubation of step b) is carried out at a temperature of 33 ° C for 8 hours. Step c) of the method of the invention comprises the removal of the culture supernatant resulting from step b).
La etapa d) del método comprende cultivar o incubar dichas células eucariotas en un medio de cultivo durante un periodo de tiempo, de manera que se consigue la expresión del GDNF recombinante, pero sin muerte celular. Step d) of the method comprises culturing or incubating said eukaryotic cells in a culture medium for a period of time, so that the expression of the recombinant GDNF is achieved, but without cell death.
La expresión "muerte celular", se usa indistintamente para referirse a apoptosis o muerte celular programada y se refiere a un proceso que implica una serie de procesos bioquímicos que dan lugar a una serie de modificaciones morfológicas tales como modificaciones de la membrana, fragmentación nuclear, condensación de cromatina, fragmentación del ADN cromosómico y encogimiento celular. Métodos adecuados para determinar el número de células del cultivo que sufren apoptosis incluyen, entre otros, el mareaje con colorantes vitales, fragmentación de ADN, actividad de caspasas, disminución del potencial de membrana de la mitocondria, producción de especies reactivas de oxígeno, condensación de cromatina y ex t e r na 1 i z a c i ó n de fostatidilserina . Preferiblemente, la etapa d) se lleva a cabo de forma que el número de células muertas en el cultivo sea como máximo del 1%, del 2%, del 3%, del 4%, del 5%, del 6%, del 7%, 8%, del 9%, del 10%, del 15%, del 20% o del 30% con respecto total de células en el cultivo. The term "cell death" is used interchangeably to refer to apoptosis or programmed cell death and refers to a process that involves a series of biochemical processes that give rise to a series of morphological modifications such as membrane modifications, nuclear fragmentation, Chromatin condensation, chromosomal DNA fragmentation and cell shrinkage. Suitable methods for determining the number of cells in the culture that suffer apoptosis include, among others, the dyeing with vital dyes, DNA fragmentation, caspases activity, decreased mitochondrial membrane potential, production of reactive oxygen species, condensation of chromatin and ex ter na 1 izacion of phostatidylserine. Preferably, step d) is carried out so that the number of dead cells in the culture is at most 1%, 2%, 3%, 4%, 5%, 6%, 7 %, 8%, 9%, 10%, 15%, 20% or 30% with respect to total cells in the culture.
En una realización, en el método para la producción de GDNF recombinante humano, o de una variante funcionalmente equivalente del mismo, el cultivo o la incubación de la etapa d) se realiza a una temperatura de 33° C o a una temperatura de 37°C. En otra realización, el cultivo o la incubación de la etapa d) se realiza durante 24 horas o 48 h. En una realización aún más preferida, cultivo o la incubación de la etapa d) se lleva a cabo durante a 37°C durante 24 horas, a 33°C durante 24 horas, a 33°C durante 48 horas. In one embodiment, in the method for the production of human recombinant GDNF, or a functionally equivalent variant thereof, the culture or incubation of step d) is carried out at a temperature of 33 ° C or a temperature of 37 ° C . In another embodiment, the culture or incubation of step d) is carried out for 24 hours or 48 h. In an even more preferred embodiment, culture or incubation of step d) is carried out for 37 hours for 24 hours, for 33 hours for 33 hours, for 33 hours for 48 hours.
La etapa f) del método para la producción de GDNF comprende la purificación del GDNF recombinante a partir del medio de cultivo Step f) of the method for the production of GDNF comprises the purification of the recombinant GDNF from the culture medium
En una realización, en el método para la producción de GDNF recombinante humano, o de una variante f u n c i o n a 1 me n t e equivalente de la misma, el vector de expresión de alfavirus comprende además un ARN transcrito in vitro. In one embodiment, in the method for the production of human recombinant GDNF, or of a variant f u n c i or n at 1 me n t and equivalent thereof, the alphavirus expression vector further comprises an in vitro transcribed RNA.
En una realización, en el método para la producción de GDNF recombinante humano, o de una variante f u n c i o n a 1 me n t e equivalente de la misma, el vector de expresión de alfavirus comprende además partículas virales que comprenden el ARN vector . In one embodiment, in the method for the production of human recombinant GDNF, or of a variant f u n c i or n at 1 me n t and equivalent thereof, the alphavirus expression vector further comprises viral particles comprising the vector RNA.
En una realización, en el método para la producción de GDNF recombinante humano, o de una variante f u n c i o n a 1 me n t e equivalente de la misma, el vector de expresión de alfavirus comprende además un promotor que es reconocible por una ARN polimerasa eucariota. In one embodiment, in the method for the production of human recombinant GDNF, or of a variant f u n c i or n at 1 me n t and equivalent thereof, the alphavirus expression vector further comprises a promoter that is recognizable by a eukaryotic RNA polymerase.
En una realización, en el método para la producción de GDNF recombinante humano, o de una variante funcionalmente equivalente del mismo, el promotor reconocible por una ARN polimerasa eucariota es el promotor de citomegalovirus (CMV) . En una realización, en el método para la producción de GDNF recombinante humano, o de una variante f u n c i o n a 1 me n t e equivalente del mismo, el vector de expresión de alfavirus comprende además una secuencia que codifica para una proteina con una actividad potenciadora de la traducción. In one embodiment, in the method for the production of human recombinant GDNF, or a functionally equivalent variant thereof, the promoter recognizable by a eukaryotic RNA polymerase is the cytomegalovirus (CMV) promoter. In one embodiment, in the method for the production of human recombinant GDNF, or a variant works 1 equivalent to it, the alphavirus expression vector further comprises a sequence encoding a protein with a translation-enhancing activity.
En una realización, en el método para la producción de GDNF recombinante humano, o de una variante funcionalmente equivalente de la misma, la secuencia que codifica para una proteina con actividad potenciadora de traducción es la secuencia que codifica por lo menos los primeros 34 aminoácidos de la cápside del virus de Semliki Forest (SFV) . En una realización, en el método para la producción de GDNF recombinante humano, o de una variante funcionalmente equivalente del mismo, el vector de expresión de alfavirus comprende además una secuencia que codifica una proteasa de auto-escisión o una secuencia diana para una proteasa celular. In one embodiment, in the method for the production of human recombinant GDNF, or a functionally equivalent variant thereof, the sequence that encodes a protein with translation enhancing activity is the sequence that encodes at least the first 34 amino acids of the Semliki Forest virus (SFV) capsid. In one embodiment, in the method for the production of human recombinant GDNF, or a functionally equivalent variant thereof, the alphavirus expression vector further comprises a sequence encoding a self-cleavage protease or a target sequence for a cellular protease .
En una realización, en el método para la producción de GDNF recombinante humano, o de una variante funcionalmente equivalente del mismo, la secuencia que codifica una proteasa de auto-escisión o la secuencia diana para una proteasa celular se expresa en fase con la secuencia con actividad potenciadora de traducción . In one embodiment, in the method for the production of human recombinant GDNF, or a functionally equivalent variant thereof, the sequence encoding a self-cleavage protease or the target sequence for a cellular protease is expressed in phase with the sequence with translation enhancement activity.
En una realización, en el método para la producción de GDNF recombinante humano, o de una variante f u n c i o n a 1 me n t e equivalente del mismo, la secuencia que codifica una proteasa de auto-escisión es la autoproteasa 2A del virus de la fiebre aftosa (FMDV) . In one embodiment, in the method for the production of human recombinant GDNF, or of a variant works 1 equivalent to it, the sequence encoding a self-cleavage protease is the 2A self-protection of foot-and-mouth disease virus (FMDV) .
En una realización, en el método para la producción de GDNF recombinante humano, o de una variante funcionalmente equivalente del mismo, la secuencia de nucleótidos que codifica para el GDNF recombinante humano, o una variante funcionalmente equivalente del mismo, se fusiona en posición 3' y manteniendo la fase de lectura con la secuencia que codifica para la proteasa de auto-escisión o la secuencia diana para una proteasa celular . In one embodiment, in the method for the production of human recombinant GDNF, or a functionally equivalent variant thereof, the nucleotide sequence encoding the human recombinant GDNF, or a functionally variant equivalent thereof, it is fused in 3 ' position and maintaining the reading phase with the sequence coding for the self-cleavage protease or the target sequence for a cellular protease.
En una realización, en el método para la producción de GDNF recombinante humano, o de una variante funcionalmente equivalente del mismo, el alfavirus es SFV. En una realización, en el método para la producción de GDNF recombinante humano, o de una variante f u n c i o n a 1 me n t e equivalente del mismo, las células eucariotas son células de mamífero seleccionadas entre BHK, CHO, VERO, y células de glioma C6. In one embodiment, in the method for the production of human recombinant GDNF, or a functionally equivalent variant thereof, the alphavirus is SFV. In one embodiment, in the method for the production of human recombinant GDNF, or of a variant f u n c i or n at 1 me n t and equivalent thereof, eukaryotic cells are mammalian cells selected from BHK, CHO, VERO, and C6 glioma cells.
En una realización, las células eucariotas que comprenden un vector de expresión de alfavirus según la presente invención se pueden preparar mediante, en primer lugar, la obtención de un ADN molde para la síntesis de ARN . Este método para la preparación de un ADN molde comprende linealizar el plásmido pSFV-hGDNF mediante la incubación de dicho plásmido con una enzima de restricción adecuada, tal como Spe I. Una vez que el plásmido se ha escindido correctamente, el producto de la digestión del plásmido se extrae de manera conveniente mediante su mezcla con, por ejemplo, fenol/cloroformo en presencia de una sal como, por ejemplo, NaAc, agitación, centrifugación y transferencia de la fase superior a un nuevo tubo. Esta extracción se puede repetir según se desee. A continuación se precipita el plásmido mediante la adición de etanol absoluto frío, seguido de la agitación, incubación a -20°, centrifugación, eliminación del sobrenadante, y adición de etanol al 70%. Una centrifugación posterior, descartando el sobrenadante, permite obtener un precipitado que contiene el plásmido linearizado. In one embodiment, eukaryotic cells comprising an alphavirus expression vector according to the present invention can be prepared by first obtaining a template DNA for RNA synthesis. This method for the preparation of a template DNA comprises linearizing the plasmid pSFV-hGDNF by incubating said plasmid with a suitable restriction enzyme, such as Spe I. Once the plasmid has been cleaved correctly, the digestion product of the Plasmid is conveniently extracted by mixing with, for example, phenol / chloroform in the presence of a salt such as, for example, NaAc, stirring, centrifugation and transfer of the upper phase to a new tube. This extraction can be repeated as desired. The plasmid is then precipitated by the addition of cold absolute ethanol, followed by stirring, incubation at -20 °, centrifugation, removal of the supernatant, and addition of 70% ethanol. A subsequent centrifugation, discarding the supernatant, allows to obtain a precipitate containing the linearized plasmid.
En una realización, las células eucariotas que contienen un vector de expresión de alfavirus, según la presente invención, se pueden preparar mediante, en primer lugar, la obtención de un ADN molde para la síntesis de AR . La síntesis de ARN se puede realizar mediante la preparación de una mezcla de plásmido pSFV- hGDNF linearizado preparado tal como se ha descrito en el párrafo anterior. La mezcla preferiblemente comprende el plásmido pSFV-hGDNF linearizado, tampón de reacción, análogo de CAP (m7G (5 ' ) ppp (5 ' ) G) (New England Biolabs . Ref. S1404S) , nucleótidos trifosfato (ATP, CTP, UTP, y GTP) , DTT, inhibidor de ARNasa (Promega. Ref. N2511) , SP6 polimerasa (New England Biolabs. Ref. M0207S) . La mezcla se incuba en condiciones adecuadas para aumentar la síntesis de ARN, preferiblemente durante 1 hora a 37 °C. In one embodiment, eukaryotic cells containing an alphavirus expression vector, according to the present invention, they can be prepared by first obtaining a template DNA for the synthesis of AR. RNA synthesis can be performed by preparing a mixture of linearized plasmid pSFV-hGDNF prepared as described in the previous paragraph. The mixture preferably comprises the linearized plasmid pSFV-hGDNF, reaction buffer, CAP analog (m7G (5 ' ) ppp (5 ' ) G) (New England Biolabs. Ref. S1404S), nucleotide triphosphate (ATP, CTP, UTP, and GTP), DTT, RNase inhibitor (Promega. Ref. N2511), SP6 polymerase (New England Biolabs. Ref. M0207S). The mixture is incubated under suitable conditions to increase RNA synthesis, preferably for 1 hour at 37 ° C.
En una realización, las células eucariotas que comprenden un vector de expresión de alfavirus según la presente invención se pueden preparar mediante electroporacion de células BHK con ARN de SFV-hGDNF tal como se obtiene en el párrafo anterior y la expresión de hGDNF. Este protocolo comprende el crecimiento de células BHK en frascos de cultivo hasta alcanzar confluencia (un frasco de cultivo confluente de 75 cm2 comprende aproximadamente 5xl06 células) . Las células se tripsinizan, se cuentan y se centrifugan. Opcionalmente , se lavan posteriormente con, por ejemplo, solución salina tamponada con fosfato (PBS sin Ca/Mg) , se centrifugan y se resuspenden de nuevo en PBS sin Ca/Mg. A continuación, dichas células se mezclan con la reacción de ARN descrita anteriormente, y se transfieren a una cubeta de electroporacion. La electroporacion se realiza posteriormente. Preferiblemente, la electroporacion se realiza a temperatura ambiente aplicando dos pulsos consecutivos de 800 voltios, manteniendo la capacitancia a 25 F (electroporador Biorad) . Estas condiciones son las más adecuadas en el caso de células BHK, ya que dan lugar a casi un 100% de células electroporadas , bloqueando de este modo casi el 100% de la síntesis de proteínas en las células huésped en el cultivo. Si se electroporan varias alícuotas de células, éstas se pueden mezclar y diluir en medio BHK completo (Glasgow-MEM ( Invitrogene . Ref. Gibco 21710) , suplementado con suero fetal bovino (FBS) a temperatura ambiente y posteriormente plaquear el volumen total en frascos de cultivo. No es necesario mezclar las células de dos electroporaciones, pero al hacerlo se reduce convenientemente el volumen del medio del que se purificará el hGDNF. A continuación, las células electroporadas se incuban preferiblemente entre 6 y 12 horas, más preferiblemente durante aproximadamente 8 horas a 33°C con C02 al 5%. Este periodo de tiempo de incubación permite una inhibición conveniente de la síntesis de proteínas celulares. Posteriormente, se elimina el sobrenadante, eliminando así el medio de cultivo que comprende suero y las proteínas celulares ya producidas, y las células se lavan posteriormente con PBS (sin Ca/Mg) . Se añade medio BHK sin suero y la mezcla se incuba, preferiblemente a 33°C con C02 al 5% durante 48 h, más preferiblemente durante 24h. Es preferible no incubar la mezcla durante demasiado tiempo, evitando así la lisis celular y que se liberen de este modo pequeñas cantidades de proteína al sobrenadante que podrían interferir en la purificación del hGDNF. A continuación, se recoge el medio de cultivo, se centrifuga y el sobrenadante se filtra y se purifica para descartar cualquier material excepto la proteína hGDNF. In one embodiment, eukaryotic cells comprising an alphavirus expression vector according to the present invention can be prepared by electroporation of BHK cells with SFV-hGDNF RNA as obtained in the preceding paragraph and the expression of hGDNF. This protocol includes the growth of BHK cells in culture bottles until they reach confluence (a 75 cm 2 confluent culture bottle comprises approximately 5 x 10 6 cells). The cells are trypsinized, counted and centrifuged. Optionally, they are subsequently washed with, for example, phosphate buffered saline (PBS without Ca / Mg), centrifuged and resuspended again in PBS without Ca / Mg. Then, said cells are mixed with the RNA reaction described above, and transferred to an electroporation cuvette. The electroporation is carried out later. Preferably, electroporation is performed at room temperature by applying two consecutive 800 volt pulses, maintaining the capacitance at 25 F (Biorad electroporator). These conditions are most suitable in the case of BHK cells, since they give rise to almost 100% electroporated cells, thereby blocking almost 100% of protein synthesis in host cells in the culture. If several aliquots of cells are electroporated, they can be mixed and diluted in complete BHK medium (Glasgow-MEM (Invitrogene. Ref. Gibco 21710), supplemented with fetal bovine serum (FBS) at room temperature and subsequently plate the total volume in culture jars. It is not necessary to mix the cells of two electroporations, but doing so conveniently reduces the volume of the medium from which the hGDNF will be purified. Next, electroporated cells are preferably incubated for 6 to 12 hours, more preferably for about 8 hours at 33 ° C with 5% C0 2 . This incubation time period allows a convenient inhibition of cell protein synthesis. Subsequently, the supernatant is removed, thus eliminating the culture medium comprising serum and the cellular proteins already produced, and the cells are subsequently washed with PBS (without Ca / Mg). BHK medium without serum is added and the mixture is incubated, preferably at 33 ° C with 5% C0 2 for 48 h, more preferably for 24 h. It is preferable not to incubate the mixture for too long, thus preventing cell lysis and thus releasing small amounts of protein to the supernatant that could interfere with the purification of hGDNF. The culture medium is then collected, centrifuged and the supernatant filtered and purified to discard any material except hGDNF protein.
Obviamente, se pueden utilizar otros medios de cultivo adecuados, dependiendo del tipo de células eucariotas utilizadas. En la realización anterior, se ha utilizado el medio de cultivo BHK (G-MEM, Gibco), ya que se utilizaron células BHK. Obviously, other suitable culture media can be used, depending on the type of eukaryotic cells used. In the previous embodiment, the BHK culture medium (G-MEM, Gibco) was used, since BHK cells were used.
Alternativamente, en otra realización, las células eucariotas que comprenden un vector de expresión de alfavirus según la presente invención se pueden preparar mediante la infección de células BHK con partículas virales de SFV-hGDNF y la expresión de hGDNF. La producción de partículas virales de SFV se basa en la coelectroporación de células BHK con el ARN recombinante de SFV-hGDNF y con dos ARN auxiliares (o helper) , que transportan genes que codifican para la cápside de SFV, y las proteínas de la envoltura, respectivamente, (Smerdou y Liljestróm, 1999) . Según esta metodología, los ADN moldes y los ARN se preparan a partir de los plásmidos pSFV-hGDNF, pSFV-helper-S2 , y pSFV- helper-C-S219A tal como se ha descrito anteriormente. Las células BHK se preparan tal como se ha descrito y las células resuspendidas se mezclan en PBS con ARN de SFV-hGDNF, SFV- helper-S2, y SFV-helper-C-S219A . A continuación, la mezcla se transfiere a una cubeta de electroporación . Preferiblemente, la electroporación se realiza a temperatura ambiente aplicando dos pulsos consecutivos de 800 voltios, manteniendo la capacitancia a 25 ]iF (electroporador Biorad) . Las células electroporadas se diluyen a continuación en medio BHK completo suplementado con FBS a temperatura ambiente y se incuban preferiblemente durante 24-48 horas a 33°C con C02 al 5%. El medio se recoge, se centrifuga para eliminar los restos celulares, y el sobrenadante que comprende las partículas virales se puede congelar y almacenar a -80°C. Alternatively, in another embodiment, eukaryotic cells comprising an alphavirus expression vector according to the present invention can be prepared by infection of BHK cells with SFV-hGDNF viral particles and hGDNF expression. The production of SFV viral particles is based on the coelectroporation of BHK cells with the recombinant RNA of SFV-hGDNF and with two helper RNAs (or helper), which carry genes that encode the capsid of SFV, and envelope proteins. , respectively, (Smerdou and Liljestróm, 1999). According to this methodology, template DNAs and RNAs are prepared from plasmids pSFV-hGDNF, pSFV-helper-S2, and pSFV- helper-C-S219A as described above. BHK cells are prepared as described and the resuspended cells are mixed in PBS with SFV-hGDNF RNA, SFV-helper-S2, and SFV-helper-C-S219A. Then, the mixture is transferred to an electroporation cuvette. Preferably, electroporation is performed at room temperature by applying two consecutive 800 volt pulses, maintaining the capacitance at 25] iF (Biorad electroporator). The electroporated cells are then diluted in complete BHK medium supplemented with FBS at room temperature and preferably incubated for 24-48 hours at 33 ° C with 5% C0 2 . The medium is collected, centrifuged to remove cell debris, and the supernatant comprising the viral particles can be frozen and stored at -80 ° C.
En una realización, la infección de células con partículas virales preparadas anteriormente se puede realizar según la siguiente metodología. Las células BHK se crecen en frascos de cultivo hasta que alcanzan la confluencia. Las células se lavan a continuación con PBS (con Ca/Mg) y se infectan posteriormente con partículas virales de SFV-hGDNF a una multiplicidad de infección (moi) de ≥5 (por lo menos 2 , 5x 107 partículas virales para 5xl06 células) mediante la adición de la cantidad requerida de virus diluido en medio de infección (por ejemplo, MEM que contiene BSA al 0,2%, glutamina 2 mM y Hepes 20 mM) . Se deja proceder la adsorción del virus, preferiblemente durante 1 h a 37°C. Se añade medio BHK con FBS a las células infectadas y la mezcla se incuba, preferiblemente entre 6 y 12 horas, más preferiblemente durante 8 horas, a 33°C con C02 al 5%. Este periodo de tiempo de incubación permite una inhibición conveniente de la síntesis de proteínas celulares. Posteriormente, se extrae el sobrenadante o medio de cultivo, y las células se lavan tantas veces como se desee con PBS (sin Ca/Mg) . Esta etapa de lavado permite la eliminación del suero y las proteínas celulares presentes en el medio. A continuación, se añade medio BHK sin FBS y la mezcla se incuba, preferiblemente a 33° C con C02 al 5% durante 48 h, más preferiblemente durante 24h. Es preferible no incubar la mezcla durante demasiado tiempo, evitando asi la lisis celular y que se liberen de este modo pequeñas cantidades de proteina al sobrenadante que podrían interferir en la purificación del hGDNF. Se recoge el medio de cultivo, se centrifuga y el sobrenadante se filtra y se purifica para descartar cualquier material excepto la proteína hGDNF. In one embodiment, the infection of cells with viral particles prepared above can be performed according to the following methodology. BHK cells are grown in culture bottles until they reach confluence. The cells are then washed with PBS (with Ca / Mg) and subsequently infected with viral particles of SFV-hGDNF at a multiplicity of infection (moi) of ≥5 (at least 2.5 x 10 7 viral particles for 5 x 10 6 cells) by adding the required amount of virus diluted in infection medium (for example, MEM containing 0.2% BSA, 2 mM glutamine and 20 mM Hepes). The adsorption of the virus is allowed to proceed, preferably for 1 h at 37 ° C. BHK medium with FBS is added to the infected cells and the mixture is incubated, preferably between 6 and 12 hours, more preferably for 8 hours, at 33 ° C with 5% C0 2 . This incubation time period allows a convenient inhibition of cell protein synthesis. Subsequently, the supernatant or culture medium is removed, and the cells are washed as many times as desired with PBS (without Ca / Mg). This washing step allows the removal of serum and cellular proteins present in the medium. Then, BHK medium without FBS is added and the mixture is incubated, preferably at 33 ° C with 5% C0 2 for 48 h, more preferably for 24h. It is preferable not to incubate the mixture for too long, thus preventing cell lysis and thus releasing small amounts of protein to the supernatant that could interfere with the purification of hGDNF. The culture medium is collected, centrifuged and the supernatant filtered and purified to discard any material except the hGDNF protein.
Alternativamente, en otra realización, las células eucariotas que comprenden un vector de expresión de alfavirus según la presente invención se pueden preparar mediante la transfeccion de células BHK con ADN de (CMV) -SFV-hGDNF con lipofectamina u otro reactivo de transfeccion. Según esta metodología, las células BHK se crecen hasta alcanzar un 40-70% de confluencia. El ADN de SFV-hGDNF y los lípidos se diluyen por separado en medio Optimem (Gibco) sin suero. Aunque la proporción de ADN/lipofectamina se puede optimizar para cada nueva preparación de ADN, 1 g de ADN de SFV/5 μΐ de lipofectamina (Gibco, ref. 18324-012) es una combinación preferida para 106 células. A continuación la dilución de los lípidos y la dilución del ADN se mezclan y se agitan. La mezcla se incuba a temperatura ambiente y se extrae el medio de cultivo de las células, seguido de la adición de medio Optimem libre de suero fetal bovino a las células. Tras la incubación, preferiblemente a 37° C, se extrae de nuevo el medio de las células, y se añade medio Optimem libre de FBS a la mezcla de lípidos y ADN. La mezcla se añade a las células y se incuba preferiblemente a 37° C durante 1 hora. La mezcla de lípidos-ADN se retira de las células, se añade el medio BHK con FBS, y se incuban entre 6 y 12 horas, más preferiblemente durante aproximadamente 8 horas a 33°C con C02 al 5% . Este periodo de tiempo de incubación permite una inhibición conveniente de la síntesis de proteínas celulares. Posteriormente, se extrae el sobrenadante, eliminando de este modo el medio de cultivo que contiene FBS y las proteínas celulares endógenas ya producidas, y las células se lavan con PBS (sin Ca/Mg) . Se añade el medio BHK sin FBS y se incuba la mezcla, preferiblemente a 33° C con C02 al 5% durante 48 h, más preferiblemente durante 24h. Es preferible no incubar la mezcla durante demasiado tiempo, evitando asi la lisis celular y que se liberen de este modo pequeñas cantidades de proteina al sobrenadante que podrían interferir en la purificación del hGDNF. A continuación, se recoge el medio de cultivo, se centrifuga, se filtra el sobrenadante y se purifica para descartar cualquier material excepto la proteína hGDNF. Alternatively, in another embodiment, eukaryotic cells comprising an alphavirus expression vector according to the present invention can be prepared by transfecting BHK cells with (CMV) -SFV-hGDNF DNA with lipofectamine or other transfection reagent. According to this methodology, BHK cells are grown to reach 40-70% confluence. SFV-hGDNF DNA and lipids are diluted separately in serum-free Optimem (Gibco) media. Although the ratio of DNA / lipofectamine can be optimized for each new DNA preparation, 1 g of SFV DNA / 5 μΐ of lipofectamine (Gibco, ref. 18324-012) is a preferred combination for 10 6 cells. Then the dilution of the lipids and the dilution of the DNA are mixed and stirred. The mixture is incubated at room temperature and the culture medium is extracted from the cells, followed by the addition of Optimem medium free of fetal bovine serum to the cells. After incubation, preferably at 37 ° C, the medium is re-extracted from the cells, and FBS-free Optimem medium is added to the mixture of lipids and DNA. The mixture is added to the cells and preferably incubated at 37 ° C for 1 hour. The lipid-DNA mixture is removed from the cells, the BHK medium is added with FBS, and incubated for 6 to 12 hours, more preferably for about 8 hours at 33 ° C with 5% C0 2 . This incubation time period allows a convenient inhibition of cell protein synthesis. Subsequently, the supernatant is removed, thereby eliminating the culture medium containing FBS and the endogenous cellular proteins already produced, and the cells are washed with PBS (without Ca / Mg). BHK medium without FBS is added and the mixture is incubated, preferably at 33 ° C with 5% C0 2 for 48 h, more preferably for 24h. It is preferable not to incubate the mixture for too long, thus preventing cell lysis and thus releasing small amounts of protein to the supernatant that could interfere with the purification of hGDNF. The culture medium is then collected, centrifuged, the supernatant filtered and purified to discard any material except hGDNF protein.
También se pueden utilizar otros métodos de transfección como los que utilizan fosfato de calcio, el uso de liposomas, la electroporación y similares. Other methods of transfection such as those using calcium phosphate, the use of liposomes, electroporation and the like can also be used.
En una realización, la etapa b) se lleva a cabo a aproximadamente 37° durante aproximadamente 8 h y la etapa d) se lleva a cabo a aproximadamente 37° durante aproximadamente 24h. En otra realización, la etapa b) se lleva a cabo a aproximadamente 37° durante aproximadamente 8 h y la etapa d) se lleva a cabo a aproximadamente 33° durante aproximadamente 24h. En otra realización, la etapa b) se lleva a cabo a aproximadamente 33° durante aproximadamente 8 h y la etapa d) se lleva a cabo a aproximadamente 33° durante aproximadamente 24h. En otra realización, la etapa b) se lleva a cabo a aproximadamente 33° durante aproximadamente 12 h y la etapa d) se lleva a cabo a aproximadamente 33° durante aproximadamente 24h. In one embodiment, step b) is carried out at approximately 37 ° for approximately 8 h and step d) is carried out at approximately 37 ° for approximately 24 h. In another embodiment, step b) is carried out at approximately 37 ° for approximately 8 h and step d) is carried out at approximately 33 ° for approximately 24 h. In another embodiment, step b) is carried out at approximately 33 ° for approximately 8 h and step d) is carried out at approximately 33 ° for approximately 24 h. In another embodiment, step b) is carried out at about 33 ° for about 12 h and step d) is carried out at about 33 ° for about 24 h.
En una realización, el hGDNF obtenido se purifica posteriormente según la siguiente metodología. Se conecta una columna de SP- sefarosa a una bomba peristáltica. La columna se equilibra con preferiblemente 10 volúmenes de columna (CV) de tampón fosfato a una velocidad de flujo constante de 1,5 ml/min. El pH del medio de cultivo que contiene hGDNF se ajusta a 8,2 con NaOH y el medio se filtra a través de una unidad de filtración de 0,22 μιτι. La muestra a purificar se carga en la columna y se recoge el flujo (FT) . A continuación, la columna se lava, preferiblemente con 10 CV de tampón fosfato, pH 8,2, y se recoge el lavado. El hGDNF unido se eluye, preferiblemente con tampón fosfato, pH 7,4, y altas concentraciones de NaCl . In one embodiment, the hGDNF obtained is subsequently purified according to the following methodology. A column of SP-sepharose is connected to a peristaltic pump. The column is preferably equilibrated with 10 column volumes (CV) of phosphate buffer at a constant flow rate of 1.5 ml / min. The pH of the culture medium containing hGDNF is adjusted to 8.2 with NaOH and the medium is filtered through a 0.22 μιτι filtration unit. The sample to be purified is loaded into the column and the flow (FT) is collected. The column is then washed, preferably with 10 CV of phosphate buffer, pH 8.2, and the wash is collected. The bound hGDNF is eluted, preferably with phosphate buffer, pH 7.4, and high concentrations of NaCl.
En una realización preferida, las células eucariotas se transforman mediante electroporación . La técnica de electroporación es bien conocida en el campo de la biotecnología y un experto en la materia puede establecer las condiciones óptimas. Brevemente, se mezclan aproximadamente 25 g de ARN sintetizado in vitro con 5xl06 células BHK-21 y se electroporan en una cubeta de 0,4 cm mediante la aplicación de dos pulsos consecutivos de 800 V y manteniendo la capacitancia a 25 ]iF . In a preferred embodiment, eukaryotic cells are transformed by electroporation. The electroporation technique is well known in the field of biotechnology and an expert in the field can establish the optimal conditions. Briefly, approximately 25 g of RNA synthesized in vitro are mixed with 5 x 10 6 BHK-21 cells and electroporated in a 0.4 cm cuvette by applying two consecutive 800 V pulses and maintaining the capacitance at 25] iF.
En otra realización, las células eucariotas son infectadas por partículas virales producidas mediante co-electroporación con el ARN recombinante de SFV-GDNF y dos ARN auxiliares que transportan los genes que codifican para la cápside de SFV y las proteínas de la envoltura ( SFV-helper-S 2 y SFV-helper-C-S219A, respectivamente) (Smerdou y Liljestróm, 1999) . In another embodiment, eukaryotic cells are infected by viral particles produced by co-electroporation with the recombinant SFV-GDNF RNA and two helper RNAs that carry the genes encoding the SFV capsid and envelope proteins (SFV-helper -S 2 and SFV-helper-C-S219A, respectively) (Smerdou and Liljestróm, 1999).
Brevemente, se mezclan aproximadamente 50 g de ARN de SFV- hGDNF, 50 ]ig de SFV-helper-S2 , y 50 ]ig de SFV-helper-C-S219A con 5xl06 células BHK-21, se resuspenden en 0,8 mi de PBS y se electroporan en una cubeta de 0,4 cm mediante la aplicación de dos pulsos consecutivos de 800 V y manteniendo la capacitancia a 25 iF. Briefly, approximately 50 g of SFV-hGDNF RNA, 50] ig of SFV-helper-S2, and 50] ig of SFV-helper-C-S219A are mixed with 5 x 10 6 BHK-21 cells, resuspended in 0.8 mi of PBS and electroporated in a 0.4 cm cuvette by applying two consecutive 800 V pulses and maintaining the capacitance at 25 iF.
En otra realización, se lavan 5xl06 células BHK-21 con 12 mi de PBS (con Ca/Mg) y se infectan con partículas virales de SFV- hGDNF a un moi de ≥5 (por lo menos 2,5x 107 partículas virales para 5xl06 células) mediante la adición de la cantidad requerida de virus diluida en 3 mi de medio de infección (MEM que contiene BSA al 0,2%, glutamina 2mM y Hepes 20 raM) . In another embodiment, 5xl0 6 BHK-21 cells are washed with 12 ml of PBS (with Ca / Mg) and infected with SFV-hGDNF viral particles at a moi of ≥5 (at least 2.5x10 7 viral particles for 5 x 10 6 cells) by adding the required amount of virus diluted in 3 ml of infection medium (MEM containing 0.2% BSA, 2mM glutamine and 20 raM Hepes).
En otra realización, se transforman 5xl06 células BHK-21 mediante la incubación a temperatura ambiente durante 15 minutos con 5 g de ADN de SFV/25 μΐ de lipofectamina (Gibco, ref. 18324-012) . En la presente invención, se puede utilizar cualquier medio de cultivo adecuado para células de mamífero, incluyendo RPMI, DMEM, suplementado con aditivos convencionales (antibióticos, aminoácidos, suero, etc.) . Las células se pueden cultivar y almacenar en cualquier dispositivo apropiado (tubos, matraces, botellas, etc. ) . La viabilidad celular o ausencia de contaminación se puede verificar antes de llevar a cabo los métodos de la presente invención. Kit para la producción de GDNF recombinante humano In another embodiment, 5 x 10 6 BHK-21 cells are transformed by incubation at room temperature for 15 minutes with 5 g of SFV DNA / 25 μΐ of lipofectamine (Gibco, ref. 18324-012). In the present invention, any culture medium suitable for mammalian cells, including RPMI, DMEM, supplemented with conventional additives (antibiotics, amino acids, serum, etc.) can be used. Cells can be grown and stored in any appropriate device (tubes, flasks, bottles, etc.). Cell viability or absence of contamination can be verified before carrying out the methods of the present invention. Kit for the production of human recombinant GDNF
En una realización, la presente invención proporciona un kit para su uso en un método para producir GDNF recombinante humano, que comprende cualesquiera de: In one embodiment, the present invention provides a kit for use in a method of producing recombinant human GDNF, comprising any of:
- un vector de alfavirus según cualquiera de las realizaciones anteriores;  - an alphavirus vector according to any of the previous embodiments;
- células eucariotas que comprenden el vector de alfavirus según cualquiera de las realizaciones anteriores ;  - eukaryotic cells comprising the alphavirus vector according to any of the above embodiments;
- medio de cultivo; o  - culture medium; or
- una combinación de los mismos.  - a combination thereof.
La presente invención se refiere además al uso de un vector de expresión de alfavirus o partículas alfavirales según cualquiera de las realizaciones presentadas en la presente invención para la producción de proteína GDNF recombinante humana, o variantes funcionalmente equivalentes de la misma. The present invention further relates to the use of an alphavirus or alpha viral particle expression vector according to any of the embodiments presented in the present invention for the production of recombinant human GDNF protein, or functionally equivalent variants thereof.
La presente invención se refiere al uso de células eucariotas que comprenden el vector de expresión de alfavirus según cualquiera de las realizaciones presentadas en la presente invención para la producción de proteína GDNF recombinante humana, o variantes funcionalmente equivalentes de la misma. Composiciones que comprenden GDNF glicosilado y usos terapéuticos de las mismas Los autores de la presente invención han puesto a punto un método de purificación de GDNF recombinante glicosilado que permite obtener composiciones que comprenden GDNF en cantidades superiores a las descritas en el estado de la técnica. Por tanto, en otro aspecto, la invención se refiere a una composición que comprende GDNF humano o una variante funcionalmente equivalente de GDNF en donde el GDNF se encuentra glicosilado y en donde la composición The present invention relates to the use of eukaryotic cells comprising the alphavirus expression vector according to any of the embodiments presented in the present invention for the production of recombinant human GDNF protein, or functionally equivalent variants thereof. Compositions comprising glycosylated GDNF and therapeutic uses thereof The authors of the present invention have developed a method of purification of recombinant glycosylated GDNF that allows to obtain compositions comprising GDNF in amounts greater than those described in the state of the art. Therefore, in another aspect, the invention relates to a composition comprising human GDNF or a functionally equivalent variant of GDNF wherein the GDNF is glycosylated and wherein the composition
(i) comprende un porcentaje de GDNF en peso con respecto al total de proteina en la composición superior a 90% y/o  (i) comprises a percentage of GDNF by weight with respect to the total protein in the composition greater than 90% and / or
(ii) se encuentra sustancialmente libre de IGFBP-4,  (ii) is substantially free of IGFBP-4,
IGFBP-5 y/o IGFBP-7. Los términos "GDNF" y "variante funcionalmente equivalente" han sido descritos en detalle con anterioridad.  IGFBP-5 and / or IGFBP-7. The terms "GDNF" and "functionally equivalent variant" have been described in detail previously.
El término "porcentaje" se refiere al porcentaje de GDNF con respecto al total de proteina en la muestra. Asi, un 90% de GDNF implica que de cada 100 de proteina en la composición, al menos 90 g corresponden a GDNF. El porcentaje de GDNF glicosilado en la muestra es de al menos 90%, al menos 91%, al menos 92%, al menos 93%, al menos 94%, al menos 95%, al menos 96%, al menos 97%, al menos 98%, al menos 99%, al menos 99,5% o al menos 100%. The term "percentage" refers to the percentage of GDNF with respect to the total protein in the sample. Thus, 90% of GDNF implies that of every 100 protein in the composition, at least 90 g correspond to GDNF. The percentage of glycosylated GDNF in the sample is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.5% or at least 100%.
En una forma preferida de realización, el GDNF es de origen humano. El término "variante funcionalmente equivalente" ha sido descrito en detalle anteriormente. En una forma preferida, la variante funcionalmente equivalente muestra una identidad de al menos 94% con respecto a GDNF de origen humano. In a preferred embodiment, the GDNF is of human origin. The term "functionally equivalent variant" has been described in detail above. In a preferred form, the functionally equivalent variant shows an identity of at least 94% with respect to GDNF of human origin.
El término "glicosilado", según se usa en la presente invención se refiere a una molécula en la que al menos uno de los sitios de N-glicosilación, preferiblemente los sitios de glicosilación en posiciones 126 y 162 en la secuencia del pre-proGDNF humano y las correspondientes en las variantes funcionalmente equivalentes de GDNF, se encuentran glicosilados . Típicamente, la estructura de los restos de glicosilación es la que aparece en células de mamíferos y que comprenden-glicanos del tipo complejo o de tipo híbrido modificados en posición terminal por restos de ácido siálico, preferiblemente disialiados y trisialilados . Preferiblemente, el GDNF glicosilado de acuerdo a la invención contiene al menos un 90%, al menos un 91%, al menos un 92%, al menos un 93%, al menos un 94%, al menos un 95%, al menos un 96%, al menos un 97%, al menos un 98%, al menos un 99% o un 100% de los restos de los glicanos de tipo complejo o de tipo híbrido sialilados. The term "glycosylated," as used in the present invention refers to a molecule in which at least one of the N-glycosylation sites, preferably the glycosylation sites at positions 126 and 162 in the human pre-proGDNF sequence. and the corresponding ones in the functionally equivalent variants of GDNF, are glycosylated. Typically, the structure of glycosylation moieties is that which appears in mammalian cells and comprising glycans of the complex or hybrid type modified in terminal position by sialic acid residues, preferably disialiated and trisyallylated. Preferably, the glycosylated GDNF according to the invention contains at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least one 96%, at least 97%, at least 98%, at least 99% or 100% of the remnants of complex-type or sialylated hybrid glycans.
La expresión "sustancialmente libre de IGFBP-4, IGFBP-5 y/o IGFBP-7" se refiere a que las composiciones contienen como máximo un 5%, un 4%, un 3%, un 2%, un 1%, un 0,5%, un 0,1%, un 0,05%, un 0,01% de una o varias proteínas seleccionadas de IGFBP-4, IGFBP-5 y/o IGFBP-7. En una forma preferida de realización, las composiciones de la invención se encuentran sustancialmente libres de IGFBP-5 y/o IGFBP-7. The expression "substantially free of IGFBP-4, IGFBP-5 and / or IGFBP-7" refers to the compositions containing at most 5%, 4%, 3%, 2%, 1%, a 0.5%, 0.1%, 0.05%, 0.01% of one or more proteins selected from IGFBP-4, IGFBP-5 and / or IGFBP-7. In a preferred embodiment, the compositions of the invention are substantially free of IGFBP-5 and / or IGFBP-7.
El término "IGFBP-4", según se usa en la presente invención se refiere a una proteína que es capaz de unirse a IGF-I e IGF-II tal y como ha sido descrita por LaTour et al. (Mol. Endocrinol . , 1991, 4:1806-14) The term "IGFBP-4", as used in the present invention refers to a protein that is capable of binding IGF-I and IGF-II as described by LaTour et al. (Mol. Endocrinol., 1991, 4: 1806-14)
El término "IGFBP-5", según se usa en la presente invención se refiere a una proteína con capacidad de unión a IGF-I y/o IGF- II, cuyo peso molecular es de aproximadamente 30 kDa, su pl de aproximadamente 8,6 y que fue descrita por Allander et al. (J. Biol. Chem. 269:10891-8) . The term "IGFBP-5", as used in the present invention refers to a protein with IGF-I and / or IGF-II binding capacity, the molecular weight of which is approximately 30 kDa, its pl of approximately 8, 6 and which was described by Allander et al. (J. Biol. Chem. 269: 10891-8).
El término "IGFBP-7" según se usa en la presente invención se refiere a una proteína con capacidad de unión a IGF-I cuyo pl es de 8,3 tal y como se describe por Wilson et al. (J. Clin. Endocrinol. Metab. 86:4504-11) . The term "IGFBP-7" as used in the present invention refers to a protein with IGF-I binding capacity whose pl is 8.3 as described by Wilson et al. (J. Clin. Endocrinol. Metab. 86: 4504-11).
Preferiblemente, las composiciones de la invención muestran una actividad específica superior a las composiciones descritas en el estado de la técnica. La expresión "actividad específica", según se usa en la presente invención, se refiere a la actividad de una enzima por miligramo (mg) de proteína y se suele expresar en unidades de actividad por miligramo de proteína. En una forma preferida de realización, las composiciones de la invención muestran una actividad específica superior a 1 x 107 unidades/mg determinada mediante la capacidad de promover la supervivencia y estimular el crecimiento de neuritas a partir de neuronas obtenidas a partir del ganglio raíz dorsal (Davies, A.M. (1989) in Neurotrophic Factor Bioassay Using Dissociated Neurons, Nerve Gro th Factor. Rush, R.A. (eds) : John Willey and Sons, Ltd. 95) . Preferably, the compositions of the invention show a specific activity superior to the compositions described in the state of the art. The term "specific activity", as used in the present invention, refers to the activity of an enzyme per milligram (mg) of protein and is usually expressed in units of activity per milligram of protein. In a preferred embodiment, the compositions of the invention show a specific activity greater than 1 x 10 7 units / mg determined by the ability to promote survival and stimulate the growth of neurites from neurons obtained from the dorsal root ganglion (Davies, AM (1989) in Neurotrophic Factor Bioassay Using Dissociated Neurons, Nerve Gro th Factor. Rush, RA (eds): John Willey and Sons, Ltd. 95).
En una forma preferida de realización, las composiciones de la invención muestran una actividad especifica superior a 25000 TU/mg determinada mediante la capacidad de promover la captación de dopamina en cultivos de meséncefalo de acuerdo al método de medida de la capacidad de GDNF de promover la captación de dopamina tritiada en células de cultivos primarios de mesencéfalo embrionario de rata en las condiciones descritas por Lin et al. ( J . eurochem . , 1994, 63:758-768) . En particular, la determinación de acuerdo a Lin et al. comprende: In a preferred embodiment, the compositions of the invention show a specific activity greater than 25,000 TU / mg determined by the ability to promote dopamine uptake in midbrain cultures according to the method of measuring the ability of GDNF to promote Tritiated dopamine uptake in cells of primary rat embryonic mesencephalon cultures under the conditions described by Lin et al. (J. Eurochem., 1994, 63: 758-768). In particular, the determination according to Lin et al. understands:
- Poner en contacto células en cultivo de 6 ó 7 días con  - Contact cells in culture of 6 or 7 days with
[3H]DA a 50 nM en buffer de captación (tampón fostado Krebs-Ringer ' s a pH 7.4 y glucosa 5.6 mM, EDTA 1.3 mM, ácido ascórbico 0.1 mM y pargilina 0.5 mM durante 15 minutos a 37°C. [ 3 H] DA at 50 nM in uptake buffer (Krebs-Ringer 's phosphate buffer pH 7.4 and 5.6 mM glucose, 1.3 mM EDTA, 0.1 mM ascorbic acid and 0.5 mM pargiline for 15 minutes at 37 ° C.
- Lavar las células con el buffer de captación,  - Wash the cells with the capture buffer,
Liberar [3H]DA de las células mediante incubación de éstas con 0.5 mi de etanol al 95% durante 30 min a 37°C, Release [ 3 H] DA from the cells by incubating them with 0.5 ml of 95% ethanol for 30 min at 37 ° C,
Determinar la radioactividad en 10 mi de EcoLite (ICN) . Los valores de fondo se obtuvieron mediante la adición al tampón de captación de GBR-12909 al 0.5 mM.  Determine the radioactivity in 10 ml of EcoLite (ICN). Background values were obtained by adding to the 0.5 mM GBR-12909 uptake buffer.
El número de unidades tróficas (TU) de actividad GDNF se determina como el reciproco de la dilución que dio lugar a un 50% de la máxima estimulación de captación de [3H]DA por el cultivo. La actividad especifica es el cociente entre el valor de TU por mililitro y la concentración de proteina por mililitro . En otro aspecto, la invención se relaciona con una composición de acuerdo a la invención para su uso en medicina. The number of trophic units (TU) of GDNF activity is determined as the reciprocal of the dilution that resulted in 50% of the maximum stimulation of uptake of [ 3 H] DA by the culture. The specific activity is the ratio between the value of TU per milliliter and the concentration of protein per milliliter. In another aspect, the invention relates to a composition according to the invention for use in medicine.
En otro aspecto, la invención se relaciona con una composición de acuerdo a la invención para su uso en el tratamiento o la prevención de un trastorno neurodegenerativo. In another aspect, the invention relates to a composition according to the invention for use in the treatment or prevention of a neurodegenerative disorder.
En otro aspecto, la invención se relaciona con el uso de una composición de acuerdo a la invención para la preparación de un medicamento para el tratamiento o prevención de un trastorno neurodegenerativo . In another aspect, the invention relates to the use of a composition according to the invention for the preparation of a medication for the treatment or prevention of a neurodegenerative disorder.
En otro aspecto, la invención se relaciona con un método para el tratamiento o la prevención de un trastorno neurodegenerativo en un sujeto que comprende la administración a dicho sujeto de una composición de acuerdo a la invención. In another aspect, the invention relates to a method for the treatment or prevention of a neurodegenerative disorder in a subject comprising the administration to said subject of a composition according to the invention.
El término "trastorno neurodegenerativo" según se usa en la presente invención se refiere a cualquier tipo de alteración en la que se altera la integridad neuronal e incluye, sin limitación, trastornos de las neuronas motoras incluyendo la esclerosis lateral amiotrófica, los trastornos neurológicos asociados con la diabetes, la enfermedad de Parkinson, la enfermedad de Alzheimer, y la corea de Huntington, glaucoma u otras enfermedades y condiciones que implican la degeneración de las células del ganglio de la retina; la neuropatía sensorial causada por lesión, o insultos, o degeneración, de las neuronas sensoriales; condiciones patológicas, tales como las degeneraciones de la retina heredadas y las retinopatías relacionadas con la edad, las enfermedades o las lesiones, en las cuales se produce la degeneración fotorreceptora y es responsable de la pérdida de visión; y la lesión o la degeneración de las células sensoriales del oído interno, tales como las células ciliadas y las neuronas auditivas para evitar y/o tratar la pérdida de oído debida a una variedad de causas. The term "neurodegenerative disorder" as used in the present invention refers to any type of alteration in which neuronal integrity is altered and includes, without limitation, motor neuron disorders including amyotrophic lateral sclerosis, neurological disorders associated with diabetes, Parkinson's disease, Alzheimer's disease, and Huntington's chorea, glaucoma or other diseases and conditions that involve degeneration of retinal ganglion cells; sensory neuropathy caused by injury, or insults, or degeneration, of sensory neurons; pathological conditions, such as inherited retinal degenerations and age-related retinopathies, diseases or injuries, in which photoreceptor degeneration occurs and is responsible for vision loss; and lesion or degeneration of sensory cells of the inner ear, such as hair cells and auditory neurons to prevent and / or treat hearing loss due to a variety of causes.
Breve descripción de las figuras Brief description of the figures
Figura 1. Purificación de GDNF de rata a partir del medio condicionado de células BHK. Análisis de las fracciones obtenidas después de la cromatografía de intercambio catiónico de medio condicionado de células BHK trans fectadas con GDNF de rata. Las fracciones eluidas con un gradiente de NaCl se analizaron mediante SDS-PAGE, seguido de tinción con Azul de Coomasie. Las fracciones que contienen GDNF de rata (14-16) también presentan un proteína muy abundante que se identificó como IGFBP-5.  Figure 1. Purification of rat GDNF from the conditioned medium of BHK cells. Analysis of the fractions obtained after cation exchange chromatography of conditioned media of transfected BHK cells with rat GDNF. Fractions eluted with a NaCl gradient were analyzed by SDS-PAGE, followed by staining with Coomasie Blue. Fractions containing rat GDNF (14-16) also have a very abundant protein that was identified as IGFBP-5.
Figura 2. Purificación de GDNF humano a partir de medio condicionado de células MDX-12 transducidas con un vector lentiviral que contiene hGDNF: cromatografía de intercambio catiónico. El medio condicionado obtenido de MDX-12 se ajustó a pH 8,2 y a continuación, se pasó a través de una resina de flujo rápido de SP-Sefarosa. El hGDNF unido se eluyó con un gradiente de 0,15 a 1 M de NaCl. Se analizaron fracciones de 2 mi mediante SDS-PAGE en condiciones reductoras seguido de tinción con azul de Coomassie (A) o transferencia Western para detectar hGDNF (B) o IGFBP-7 (C) . Figure 2. Purification of human GDNF from medium conditioned of MDX-12 cells transduced with a lentiviral vector containing hGDNF: cation exchange chromatography. The conditioned medium obtained from MDX-12 was adjusted to pH 8.2 and then passed through a fast-flowing resin of SP-Sepharose. The bound hGDNF was eluted with a gradient of 0.15 to 1 M NaCl. 2 ml fractions were analyzed by SDS-PAGE under reducing conditions followed by staining with Coomassie blue (A) or Western blotting to detect hGDNF (B) or IGFBP-7 (C).
Figura 3. Purificación de GDNF humano a partir de medio condicionado de células MDX-12 transducidas con un vector lentiviral que contiene hGDNF: cromatografía de filtración en gel . Las fracciones de la cromatografía de SP-Sefarosa que contenían hGDNF y bajas cantidades de IGFBP-7 se desalaron y concentraron mediante liofilización . El liofilizado se resuspendió y se aplicó a una columna Superdex 200 HR. (A) Cromatograma de la proteína (absorbancia a 215 nm) frente al volumen (mi) . La barra horizontal indica las fracciones que se analizaron mediante SDS-PAGE seguido de tinción con azul de Coomasie (B) . El primer pico del cromatograma corresponde a la IGFBP-7 y el segundo al GDNF. Figure 3. Purification of human GDNF from conditioned medium of MDX-12 cells transduced with a lentiviral vector containing hGDNF: gel filtration chromatography. SP-Sepharose chromatography fractions containing hGDNF and low amounts of IGFBP-7 were desalted and concentrated by lyophilization. The lyophilisate was resuspended and applied to a Superdex 200 HR column. (A) Protein chromatogram (absorbance at 215 nm) versus volume (mi). The horizontal bar indicates the fractions that were analyzed by SDS-PAGE followed by staining with Coomasie blue (B). The first peak of the chromatogram corresponds to the IGFBP-7 and the second to the GDNF.
Figura 4. Vector de expresión de SFV-hGDNF. (A) Diagrama del vector. El vector contiene la replicasa de SFV seguida de un promotor subgenómico (Pr sg) . La ORF que codifica para hGDNF está situada corriente abajo del Pr sg fusionada en fase con el potenciador mínimo de traducción de la cápside de SFV (Enh bl) y la autoproteasa 2A de FMDV (2A) . Enh bl codifica para los primeros 34 aminoácidos de la cápside de SFV y 2A codifica para los 17 aminoácidos indicados en la figura. (B) Expresión de hGDNF. Las células BHK se electroporaron por duplicado con ARN de hGDNF y 24 h después se analizó la presencia de hGDNF en los sobrenadantes mediante transferencia Western (canales 1 y 2) . Células electroporadas con ARN de un vector de SFV que codifican para la N-acetil-transferasa de puromicina se utilizaron como control negativo (SFV-pac) . El sobrenadante de células MDX-12 que expresan hGDNF (lenti GDNF) o GDNF de rata comercial expresado a partir de un vector de baculovirus en células de insectos (GDNF de insecto) se utilizaron como controles positivos. La cantidad de sobrenadante o proteina recombinante purificada (GDNF de insecto) utilizada en este estudio se indica bajo el gel . Figure 4. SFV-hGDNF expression vector. (A) Vector diagram. The vector contains the SFV replicase followed by a subgenomic promoter (Pr sg). The ORF encoding hGDNF is located downstream of the Pr sg fused in phase with the minimum translation enhancer of the SFV capsid (Enh bl) and FMDV 2A autoprotease (2A). Enh bl codes for the first 34 amino acids of the SFV capsid and 2A codes for the 17 amino acids indicated in the figure. (B) Expression of hGDNF. BHK cells were electroporated in duplicate with hGDNF RNA and 24 h later the presence of hGDNF in the supernatants was analyzed by Western blotting (channels 1 and 2). RNA electroporated cells of an SFV vector encoding puromycin N-acetyl transferase were used as a negative control (SFV-pac). The supernatant of MDX-12 cells expressing hGDNF (GDNF lenti) or commercial rat GDNF expressed from a baculovirus vector in cells Insects (insect GDNF) were used as positive controls. The amount of purified recombinant protein or supernatant (insect GDNF) used in this study is indicated under the gel.
Figura 5. Análisis del medio condicionado de células BHK electroporadas con el vector de SFV. Se analizó mediante transferencia Western del medio condicionado de células BHK electroporadas con ARN de SFV-hGDNF o sin ARN (control) . Una vez se electroporaron las células, se cambió el medio a medio sin suero a los tiempos indicados y se recogió 24 h más tarde. hGDNF se expresa a niveles elevados en el medio de células transfectadas . Dos proteínas secretadas al medio de cultivo en células transf ectadas sin ARN, IGFBP-5 e IGFBP-4 , han desaparecido completamente debido a la fuerte inhibición de síntesis de proteínas endógenas inducida por el vector de SFV. La transferencia estern de β-actina se realizó a partir de lisados celulares que indicaron que todos los pocilios de cultivo contenían la misma cantidad inicial de células. Figure 5. Analysis of the conditioned medium of BHK cells electroporated with the SFV vector. It was analyzed by Western blotting of the conditioned medium of electroporated BHK cells with SFV-hGDNF RNA or without RNA (control). Once the cells were electroporated, the medium was changed to medium without serum at the indicated times and was collected 24 h later. hGDNF is expressed at elevated levels in the middle of transfected cells. Two proteins secreted to the culture medium in transfused cells without RNA, IGFBP-5 and IGFBP-4, have completely disappeared due to the strong inhibition of endogenous protein synthesis induced by the SFV vector. The stern transfer of β-actin was performed from cell lysates that indicated that all culture wells contained the same initial amount of cells.
Figura 6. Purificación de GDNF humano a partir de células BHK t r a n s f e c t ada s con un vector de SFV que contiene hGDNF: cromatografía de intercambio catiónico. El medio condicionado obtenido de las células BHK se ajustó a pH 8, 2 y, a continuación, se pasó por una resina de flujo rápido de SP- Sefarosa. El hGDNF unido se eluyó en una única etapa con 0,5 M de NaCl (El) y se analizó el eluído mediante tinción con Azul de Coomasie (A) y transferencia Western (B) . L: Medio condicionado cargado en la columna: FT : Medio condicionado tras pasar por la columna; W: lavado de la columna; El: elución con 0.5 M de NaCl; E2: elución con 1 M de NaCl. Figure 6. Purification of human GDNF from BHK cells t r a n s f e c t ada s with an SFV vector containing hGDNF: cation exchange chromatography. The conditioned medium obtained from the BHK cells was adjusted to pH 8.2 and then passed through a fast-flowing resin of SP-Sepharose. The bound hGDNF was eluted in a single step with 0.5 M NaCl (El) and the eluate was analyzed by staining with Coomasie Blue (A) and Western blotting (B). L: Conditioned medium loaded in the column: FT: Conditioned medium after passing through the column; W: column wash; El: elution with 0.5 M NaCl; E2: elution with 1 M NaCl.
Figura 7. Diferenciación inducida por GDNF de PC-12. Las células PC-12 se incubaron a una densidad baja (2 x 103 células/cm2) en placas de cultivo recubiertas de colágeno. Al medio de cultivo se añadió hGDNF glicosilado puro (25 ng/ml) purificado a partir del sobrenadante de células BHK transfectadas con el vector de SFV-hGDNF, o hGDNF no glicosilado producido en bacterias (50 ng/ml) en el día 0. Las imágenes de contraste de fase se tomaron el día 8. Figura 8. Comparación entre dos protocolos para la purificación de GDNF glicosilado humano. En el panel izquierdo, una modificación del protocolo descrito por Ansorena et al. (2009) para la purificación de GDNF humano glicosilado. En los paneles central y derecho, el método de la invención para producir fácilmente una cantidad elevada de GDNF glicosilado de células BHK trans fectadas con un vector de SFV que expresa hGDNF aplicado en dos escalas preparativas diferentes. Figure 7. GDNF induced differentiation of PC-12. PC-12 cells were incubated at a low density (2 x 10 3 cells / cm 2 ) in collagen coated culture plates. To the culture medium was added pure glycosylated hGDNF (25 ng / ml) purified from the supernatant of BHK cells transfected with the SFV-hGDNF vector, or non-glycosylated hGDNF produced in bacteria (50 ng / ml) on day 0. Phase contrast images were taken on day 8. Figure 8. Comparison between two protocols for the purification of human glycosylated GDNF. In the left panel, a modification of the protocol described by Ansorena et al. (2009) for the purification of glycosylated human GDNF. In the central and right panels, the method of the invention to easily produce a high amount of glycosylated GDNF from transfected BHK cells with an SFV vector expressing hGDNF applied at two different preparative scales.
Figura 9. Estudio de la estabilidad de GDNF glicosilado después de la purificación de células BHK trans fectadas con SFV-hGDNF. La figura muestra que la mayoría de la proteína no glicosilada se degrada después de 24 horas de incubación a temperatura ambiente y que desaparece después de 48 horas. Sin embargo, el hGDNF glicosilado aún está presente después de 3 semanas de incubación a temperatura ambiente.  Figure 9. Study of the stability of glycosylated GDNF after purification of transfected BHK cells with SFV-hGDNF. The figure shows that most of the non-glycosylated protein degrades after 24 hours of incubation at room temperature and disappears after 48 hours. However, glycosylated hGDNF is still present after 3 weeks of incubation at room temperature.
Ejemplos Examples
Ejemplo 1: Producción de GDNF glicosilado humano utilizando células BHK transfectadas de forma estable con hGDNF  Example 1: Production of human glycosylated GDNF using stably transfected BHK cells with hGDNF
Las células BHK se utilizan comúnmente para la transfección . Esta línea celular ya se ha utilizado para expresar de manera estable y purificar el GDNF de rata (rGDNF) a partir del medio condicionado. Para ello, se obtuvo un fragmento de ADNc que contenía la región codificante del gen de rGDNF mediante PCR del ARN total de cerebro de rata Pl y se clonó en el vector pDEST26 utilizando tecnología Gateway de Invitrogen. Las células BHK se trans fectaron con pDEST26-GDNF y los clones de células que expresaban de forma estable el rGDNF seleccionaron con G-418 (Invitrogen) . El rGDNF liberado al medio de cultivo se purificó a través de dos etapas que comprendían una cromatografía de intercambio catiónico seguido de una cromatografía de exclusión molecular (Garbayo et al., 2007) . Un problema recurrente que se observó cuando se intentó purificar el GDNF de rata del medio de células BHK que expresaban esta proteína fue la copurificación de otra proteína presente en el sobrenadante, que se identificó mediante análisis LC-ESI-MS/MS como IGFBP-5 (se detectaron 16 péptidos correspondientes a IGFBP-5 con una cobertura del 52% de la cadena peptídica) . Después de la cromatografía con SP- Sefarosa, el análisis de las fracciones mediante SDS-PAGE seguido de la tinción con Azul de Coomasie reveló la presencia de dos bandas principales, la superior correspondiente a la IGFBP-5 y la inferior al rGDNF. Las fracciones que contenían los picos de las dos proteínas se solapaban de manera que las fracciones que contenían la mayoría del rGDNF también tenían IGFBP-5. Esta proteína tiene un peso molecular (MW) de 30 kDa y un pl de 8,6, estando presente cuando el dímero de rGDNF se purificó a partir de esta línea celular (figura 1) (Garbayo et al . 2007) . BHK cells are commonly used for transfection. This cell line has already been used to stably express and purify the rat GDNF (rGDNF) from the conditioned medium. To do this, a cDNA fragment containing the coding region of the rGDNF gene was obtained by PCR of the total rat brain RNA Pl and was cloned into the vector pDEST26 using Invitrogen Gateway technology. BHK cells were transfected with pDEST26-GDNF and cell clones stably expressing rGDNF selected with G-418 (Invitrogen). The rGDNF released to the culture medium was purified through two steps comprising a cation exchange chromatography followed by a molecular exclusion chromatography (Garbayo et al., 2007). A recurring problem that was observed when attempting to purify the rat GDNF from the medium of BHK cells expressing this protein was the copurification of another protein present in the supernatant, which was identified by LC-ESI-MS / MS analysis as IGFBP-5 (16 peptides corresponding to IGFBP-5 were detected with a 52% coverage of the peptide chain). After SP-Sepharose chromatography, analysis of the fractions by SDS-PAGE followed by staining with Coomasie Blue revealed the presence of two main bands, the upper one corresponding to the IGFBP-5 and the lower one to rGDNF. The fractions containing the peaks of the two proteins overlapped so that the fractions containing the majority of rGDNF also had IGFBP-5. This protein has a molecular weight (MW) of 30 kDa and a pl of 8.6, being present when the rGDNF dimer was purified from this cell line (Figure 1) (Garbayo et al. 2007).
Utilizando el mismo procedimiento se generó una línea de células BHK estable que expresaba el GDNF humano, pero en este caso, las células no eran capaces de producir cantidades adecuadas de hGDNF para permitir el proceso de purificación. Por otro lado, debido al hecho de que las células BHK producen IGFBP-5 a niveles elevados y esta proteína se copurifica con GDNF, se decidió producir hGDNF a partir de una línea celular diferente. Ejemplo 2: Producción de GDNF glicosilado humano utilizando fibroblastos dérmicos humanos inmortalizados y transducidos con un vector lentiviral que contiene hGDNF  Using the same procedure, a stable BHK cell line was generated that expressed human GDNF, but in this case, the cells were not able to produce adequate amounts of hGDNF to allow the purification process. On the other hand, due to the fact that BHK cells produce IGFBP-5 at elevated levels and this protein is copurified with GDNF, it was decided to produce hGDNF from a different cell line. Example 2: Production of human glycosylated GDNF using immortalized and transduced human dermal fibroblasts with a lentiviral vector containing hGDNF
En una estrategia diferente, el hGDNF se expresó utilizando una línea celular de fibroblastos dérmicos humanos inmortalizados y transducidos con un vector lentiviral ( pCCL-WPS-hGDNF) que contenía el gen de hGDNF (células MDX-12) (Sajadi et al., 2006) . Estas células se crecieron en DMEM con Glutamax suplementado con FBS al 10%, 100 unidades/ml de penicilina y 100 g/ml de estreptomicina. El hGDNF se purificó del medio condicionado (sobrenadante) de las células MDX-12 obteniéndose una cantidad muy baja de hGDNF biológicamente activo.  In a different strategy, hGDNF was expressed using a cell line of human dermal fibroblasts immortalized and transduced with a lentiviral vector (pCCL-WPS-hGDNF) containing the hGDNF gene (MDX-12 cells) (Sajadi et al., 2006 ). These cells were grown in DMEM with Glutamax supplemented with 10% FBS, 100 units / ml of penicillin and 100 g / ml of streptomycin. The hGDNF was purified from the conditioned medium (supernatant) of the MDX-12 cells to obtain a very low amount of biologically active hGDNF.
2.1. Recogida del medio condicionado 2.1. Collection of conditioned medium
Las células MDX-12 se crecieron en un medio con FBS al 10% hasta alcanzar un 80% de confluencia. Después de lavar con PBS, las células se cultivaron en frascos de cultivo de 175 cm2 con 22 mi de medio sin suero. El medio condicionado que contenía hGDNF se recogió cada 48 h y se almacenó a -20°C MDX-12 cells were grown in a medium with 10% FBS until reaching 80% confluence. After washing with PBS, the cells were grown in 175 cm 2 culture bottles with 22 ml of serum-free medium. The conditioned medium containing hGDNF is collected every 48 h and stored at -20 ° C
2.2. Purificación de hGDNF del medio condicionado 2.2. Purification of hGDNF from the conditioned medium
Se utilizó una cantidad total de 20 L de medio condicionado para la purificación de hGDNF. El medio se descongeló, se ajustó el pH a 8,2 con NaOH y el medio se filtró a través de una unidad de filtración de 0,22 μιτι. El hGDNF se purificó en tres etapas de cromatografía tal como se describe a continuación. Cromatografía 1: Cromatografía de intercambio catiónico  A total amount of 20 L of conditioned medium was used for the purification of hGDNF. The medium was thawed, the pH was adjusted to 8.2 with NaOH and the medium was filtered through a 0.22 μιτι filtration unit. The hGDNF was purified in three chromatography steps as described below. Chromatography 1: Cation Exchange Chromatography
Se procesó una cantidad total de 20 L de medio condicionado de células MDX-12 en dos lotes de 10 L cada uno. La resina de SP- Sefarosa (GE Healthcare Biosciencies ) (30 mi) se empaquetó en una columna XK/ 16/20 (GE Healthcare Biosciencies) y se pasaron 10 L del medio condicionado que contenía hGDNF a una velocidad de flujo de 3 ml/min durante 2,5 días a 4°C. La columna se lavó con 10 volúmenes de columna (CV) de tampón fosfato 10 mM de pH 8,2, NaCl 150 mM y EDTA 5 mM a la misma velocidad de flujo. El hGDNF unido se eluyó con un gradiente lineal de 0,15 M a 1 M de NaCl en el mismo tampón, a una velocidad de flujo de 0,62 ml/min. Se recogieron fracciones de 2 mi y se analizaron mediante SDS-PAGE seguido de tinción con Azul de Coomasie y transferencia Western en condiciones reductoras (Figura 2) . La tinción con Azul de Coomasie mostró dos bandas mayoritarias presentes en la mayoría de fracciones (Figura 2A) . Una banda correspondiente a una proteína con un MW de 29 kDa que eluía a concentraciones inferiores de sal era la más abundante. La segunda banda de 18 kDa, empezó a eluirse a NaCl 0,5 M y su MW concordaba con el tamaño esperado para el monómero de hGDNF. El análisis por transferencia Western con un anticuerpo específico para hGDNF confirmó que la banda de MW inferior correspondía con este factor neurotrófico (Figura 2B) . Con el fin de separar ambas bandas en la siguiente etapa, se procedió a identificar la proteína de 29 kDa mediante espectrometría de masas. El fragmento de gel que contiene la banda se cortó y se envió para su identificación. El análisis por LC-ESI-MS/MS reveló que la proteina contaminante era la proteina de unión al factor de crecimiento de tipo insulina humana 7 (IGFBP-7) con 20 péptidos que concuerdan con esta proteina, correspondientes al 32% de la secuencia. Este resultado se confirmó mediante transferencia Western con un anticuerpo especifico para IGFBP-7 (Figura 2C) . A total amount of 20 L of conditioned medium from MDX-12 cells was processed in two batches of 10 L each. The SP-Sepharose resin (GE Healthcare Biosciencies) (30 ml) was packed in a XK / 16/20 column (GE Healthcare Biosciencies) and 10 L of the conditioned medium containing hGDNF was passed at a flow rate of 3 ml / min for 2.5 days at 4 ° C. The column was washed with 10 column volumes (CV) of 10 mM phosphate buffer pH 8.2, 150 mM NaCl and 5 mM EDTA at the same flow rate. The bound hGDNF was eluted with a linear gradient of 0.15 M to 1 M NaCl in the same buffer, at a flow rate of 0.62 ml / min. 2 ml fractions were collected and analyzed by SDS-PAGE followed by staining with Coomasie Blue and Western blotting under reducing conditions (Figure 2). Staining with Coomasie Blue showed two major bands present in most fractions (Figure 2A). A band corresponding to a protein with a MW of 29 kDa eluting at lower concentrations of salt was the most abundant. The second band of 18 kDa began to elute at 0.5 M NaCl and its MW agreed with the expected size for the hGDNF monomer. Western blot analysis with an hGDNF specific antibody confirmed that the lower MW band corresponded to this neurotrophic factor (Figure 2B). In order to separate both bands in the next stage, the 29 kDa protein was identified by mass spectrometry. The gel fragment that contains the Band was cut and sent for identification. Analysis by LC-ESI-MS / MS revealed that the contaminating protein was the human insulin-like growth factor binding protein 7 (IGFBP-7) with 20 peptides that match this protein, corresponding to 32% of the sequence . This result was confirmed by Western blotting with an antibody specific for IGFBP-7 (Figure 2C).
Problema issue
La primera cromatografía no nos permitió obtener hGDNF puro debido a la copur i f i caci ón de IGFBP-7. Si se comparan las propiedades físico-químicas de la IGFBP-7 y el hGDNF, ambas proteínas son muy similares ya que tienen un pl teórico elevado de 8,3 y 9,26, respectivamente, por lo que ambas se unen al intercambiador de cationes. Aunque la IGFBP-7 tiene un pl inferior y, por tanto, eluye a una concentración de sal inferior que el hGDNF (figura 2A) , la abundancia de IGFBP-7, ensancha su pico solapándose con el pico correspondiente a la elución del hGDNF. El hGDNF es una proteína homodimérica con un MW muy similar al de IGFBP-7. Debido a la abundancia de ambas proteínas en las mismas fracciones, no es posible separarlas mediante cromatografía de filtración en gel. Con el fin de poder de continuar con la purificación de hGDNF, sólo las fracciones (29 a 40) con una cantidad baja de IGFBP-7 se pueden utilizar para continuar el proceso de purificación, teniendo que descartar las fracciones que contienen la mayoría del hGDNF recombinante . The first chromatography did not allow us to obtain pure hGDNF due to the copying of IGFBP-7. If the physicochemical properties of IGFBP-7 and hGDNF are compared, both proteins are very similar since they have a high theoretical plot of 8.3 and 9.26, respectively, so they both bind to the cation exchanger . Although IGFBP-7 has a lower pl and, therefore, elutes at a lower salt concentration than hGDNF (Figure 2A), the abundance of IGFBP-7 widens its peak overlapping with the peak corresponding to the elution of hGDNF. HGDNF is a homodimeric protein with a MW very similar to that of IGFBP-7. Due to the abundance of both proteins in the same fractions, it is not possible to separate them by gel filtration chromatography. In order to be able to continue with the purification of hGDNF, only fractions (29 to 40) with a low amount of IGFBP-7 can be used to continue the purification process, having to discard the fractions containing the majority of hGDNF recombinant
Cromatografía 2: cromatografía de intercambio catiónico Chromatography 2: cation exchange chromatography
Dado que la principal diferencia físico-química entre ambas proteínas es el pl, las fracciones que contenían hGDNF y una cantidad baja de IGFBP-7 se repitió la cromatografía de intercambio catiónico. Para ello únicamente se utilizaron las fracciones (29-40) eluidas de la primera cromatografía de intercambio catiónico (24 mi), que contenían aproximadamente NaCl 0,7 M. El conjunto de las fracciones se diluyó 4,6 veces en tampón fosfato 10 mM, pH 8,2, EDTA 5 mM para conseguir una concentración de NaCl de 0,15 mM y se cargaron de nuevo sobre la misma columna de intercambio catiónico. La cromatografía se realizó bajo las mismas condiciones que la cromatografía 1 y los resultados fueron muy similares. En esta etapa, fue posible separar ligeramente los picos de ambas proteínas. De esta manera, el proceso de purificación continuó con el mismo grupo de fracciones (29-40) enriquecidas en hGDNF, pero que todavía contenían menos IGFBP-7. Since the main physicochemical difference between both proteins is the pl, the fractions containing hGDNF and a low amount of IGFBP-7 were repeated cation exchange chromatography. Only fractions (29-40) eluted from the first cation exchange chromatography (24 ml), containing approximately 0.7 M NaCl, were used. The whole fractions were diluted 4.6 times in 10 mM phosphate buffer. , pH 8.2, 5 mM EDTA to achieve a NaCl concentration of 0.15 mM and were reloaded onto the same cation exchange column. Chromatography was performed under the same conditions as chromatography 1 and the results were very similar. At this stage, it was possible to slightly separate the peaks of both proteins. In this way, the purification process continued with the same group of fractions (29-40) enriched in hGDNF, but still contained less IGFBP-7.
Cromatografía 3: Filtración en gel Chromatography 3: Gel filtration
Para continuar la purificación de hGDNF, el grupo de fracciones seleccionadas de la segunda cromatografía (24 mi) se desalaron hasta NaCl 50 raM en tampón fosfato 10 raM pH 8,2 utilizando una columna de desalado HiPrep 26/10 (GE Healthcare Biosciences) en un FPLC AKTA purifier (GE Healthcare B i o s ci e nc i e s ) a una velocidad de flujo de 3 ml/min. La concentración de proteína se monitorizó a lo largo del proceso y todas las fracciones que contenían proteína se recogieron y agruparon. En esta etapa, el volumen inicial se diluyó 1,5 veces. Dado que el volumen de carga máximo en esta columna es de 15 mi, esta cromatografía se realizó en dos etapas (2 x 12 mi) . To continue the purification of hGDNF, the group of fractions selected from the second chromatography (24 ml) were desalted to 50 raM NaCl in 10 raM phosphate buffer pH 8.2 using a HiPrep 26/10 desalination column (GE Healthcare Biosciences) in an FPLC AKTA purifier (GE Healthcare B ios ci e nc ies) at a flow rate of 3 ml / min. Protein concentration was monitored throughout the process and all fractions containing protein were collected and pooled. At this stage, the initial volume was diluted 1.5 times. Since the maximum loading volume in this column is 15 ml, this chromatography was performed in two stages (2 x 12 ml).
La muestra se concentró mediante liofilización y se resuspendió en el volumen más pequeño posible (3 mi) . Finalmente, las fracciones que contenían proteínas se cargaron en una Superdex 200 HR 10/30 (GE Healthcare Biosciencies ) utilizando el FPLC AKTA purifier a una velocidad de flujo de 0,5 ml/min. Se recogieron fracciones de 0,5 mi y se analizaron por SDS-PAGE seguido de tinción con Azul de Coomasie. El cromatograma mostró un pico muy estrecho que eluyó a 16 mi y que correspondía a IGFBP-7 y un pico más amplio que contenía las diferentes formas de hGDNF glicosilado que eluyó a 19 mi (Figura 3A) . Cuando se analizaron las fracciones de hGDNF mediante tinción con Azul de Coomasie (Figura 3B) , algunas de ellas aún contenían la proteína contaminante y se descartaron para posteriores estudios. Las fracciones que contenían hGDNF puro se liofilizaron y almacenaron a -80°C.  The sample was concentrated by lyophilization and resuspended in the smallest possible volume (3 ml). Finally, the fractions containing proteins were loaded into a Superdex 200 HR 10/30 (GE Healthcare Biosciencies) using the FPLC AKTA purifier at a flow rate of 0.5 ml / min. 0.5 ml fractions were collected and analyzed by SDS-PAGE followed by staining with Coomasie Blue. The chromatogram showed a very narrow peak that eluted at 16 ml and that corresponded to IGFBP-7 and a wider peak that contained the different forms of glycosylated hGDNF eluted at 19 ml (Figure 3A). When the hGDNF fractions were analyzed by Coomasie Blue staining (Figure 3B), some of them still contained the contaminating protein and were discarded for further studies. Fractions containing pure hGDNF were lyophilized and stored at -80 ° C.
Conclusión : Utilizando este protocolo ha sido posible purificar 107 ± 22 ]ig de hGDNF glicosilado, que es aproximadamente el 1% del GDNF contenido en la muestra inicial. Sin embargo, el procedimiento para obtener esta pequeña cantidad de proteina es muy laborioso y requiere mucho tiempo, ya que se parte de una gran cantidad de medio condicionado (20 L) , obtenida a su vez de una gran cantidad de células. El tiempo total del proceso de purificación de hGDNF a partir del medio condicionado es de 16 días. Esto incluye las etapas descritas anteriormente, que se resumen en la figura 8 (panel izquierdo) , junto con el análisis de proteínas (SDS-PAGE, tinción con Azul de Coomassie y transferencia Western) realizadas después de cada purificación para determinar las fracciones que contienen hGDNF con una contaminación menor de IGFBP-7. No obstante, el principal problema es el nivel elevado de co-purificación de IGFBP-7 que fuerza a descartar la mayoría de las fracciones que contienen hGDNF para obtener una proteína pura. Conclusion : Using this protocol it has been possible to purify 107 ± 22] ig of glycosylated hGDNF, which is approximately 1% of the GDNF contained in the initial sample. However, the procedure to obtain this small amount of protein is very laborious and time-consuming, since it starts from a large amount of conditioned medium (20 L), obtained in turn from a large number of cells. The total time of the hGDNF purification process from the conditioned medium is 16 days. This includes the steps described above, which are summarized in Figure 8 (left panel), together with the protein analysis (SDS-PAGE, Coomassie Blue staining and Western blot) performed after each purification to determine the fractions containing hGDNF with a minor contamination of IGFBP-7. However, the main problem is the high level of co-purification of IGFBP-7 that forces the majority of hGDNF-containing fractions to be discarded to obtain a pure protein.
Ejemplo 3: Producción y purificación de GDNF glicosilado humano de células de mamífero transfectadas o infectadas con un vector del virus de Semliki Forest que expresa hGDNF (SFV-hGDNF) Example 3: Production and purification of human glycosylated GDNF from mammalian cells transfected or infected with a Semliki Forest virus vector expressing hGDNF (SFV-hGDNF)
3.1. Construcción del vector SFV-hGDNF  3.1. Construction of the SFV-hGDNF vector
El cDNA completo correspondiente al hGDNF se amplificó mediante PCR a partir de una línea celular de astrocitos humanos, SVGpl2 (Moretto et al., 1996) y se clonó en el plásmido pDONR201 (Invitrogen) siguiendo las instrucciones del fabricante. Los c e b a d o r e s u t i l i z a d o s f u e r o n : 5 '- GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGATGAAGTTATGGGATGTCG-3 ' (SEC I D N O : 6 ), y 5 The complete cDNA corresponding to hGDNF was amplified by PCR from a human astrocyte cell line, SVGpl2 (Moretto et al., 1996) and was cloned into plasmid pDONR201 (Invitrogen) following the manufacturer's instructions. The primers used were: 5 ' - GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGATGAAGTTATGGGATGTCG-3 ' (SEQ IDNO: 6), and 5
GGGGACCACTTTGTACAAGAAAGCTGGGTTCAGATACATCCACACCTTTTAGCG-3 ' (SEC ID NO:7), donde las secuencias subrayadas hibridan con los extremos 5' y 3' del gen de hGDNF, respectivamente. Para la preparación del vector de expresión de SFV-hGDNF, se amplificó el gen de hGDNF mediante PCR del plásmido p DONR201-GDNF u t i l i z a n do l o s s i gu i e n t e s c eb a do r e s : 5 ' - CGTAGTACGTAcccgggAAGTTATGGGATGTCGTGGC-3 ' (SEC ID NO : 8 ) donde la secuencia subrayada híbrida con el extremo 5' del gen de hGDNF y 5 " -CGTAGTACGTAcccgggrCAGATACATCCACACCTTTTAGC-3 ' (SEC ID NO : 9 ) donde la secuencia subrayada es complementaria al extremo 3' del gen de hGDNF (codón de parada en cursiva) . Se obtuvo un fragmento de 0,67 kb que se digirió con Xma I (sitios indicados en negrita) y se clonó en el sitio Xma I único de pSFV-bl2A (Rodriguez-Mado z et al., 2005), generando el plásmido pSFV- hGDNF. El gen de hGDNF se clonó en fase con la secuencia que codifica para los primeros 34 aminoácidos de la cápside de SFV (Bl) y la autoproteasa 2A de FMDV. La primera metionina de hGDNF se eliminó, ya que la proteina se expresará como un producto de fusión que se escindirá autocataliticamente por la proteasa 2A. La estructura del vector se representa en la figura 4A. GGGGACCACTTTGTACAAGAAAGCTGGGTTCAGATACATCCACACCTTTTAGCG-3 ' (SEQ ID NO: 7), where the underlined sequences hybridize with the 5 ' and 3 ' ends of the hGDNF gene, respectively. For the preparation of the SFV-hGDNF expression vector, the hGDNF gene was amplified by PCR of the plasmid p DONR201-GDNF using the loss of guidelines: 5 ' - CGTAGTACGTAcccgggAAGTTATGGGATGTCGTGGC-3 ' (SEQ ID NO: 8) where the hybrid underlined sequence with the 5 ' end of the hGDNF gene and 5 " -CGTAGTACGTAcccgggrCAGATACATCCACACCTTTTAGC-3 ' (SEQ ID NO: 9) where the underlined sequence is complementary to the 3' end of the hGDNF gene (italic stop codon). A 0.67 kb fragment was obtained that was digested with Xma I (sites indicated in bold) and was cloned into the unique Xma I site of pSFV-bl2A (Rodriguez-Mado z et al., 2005), generating plasmid pSFV-hGDNF. The hGDNF gene was cloned in phase with the sequence which codes for the first 34 amino acids of the SFV capsid (Bl) and FMDV 2A autoprotease The first hGDNF methionine was removed, since the protein will be expressed as a fusion product that will be cleaved autocatalytically by protease 2A. The structure of the vector is represented in Figure 4A.
3.2. Expresión de hGDNF en células BHK transfectadas con el vector SFV-hGDNF 3.2. Expression of hGDNF in BHK cells transfected with the SFV-hGDNF vector
Se linearizó el plásmido pSFV-hGDNF con Spel y se utilizó como molde para la síntesis de ARN utilizando SP6 polimerasa tal como se ha descrito previamente (Liljestrom y Garoff, 1994) . Brevemente, se incubaron 1,5 g de ADN de pSFV-hGDNF linealizado durante 1 h a 37°C en tampón SP6 suplementado con 1 mM de m7G (5 ' ) ppp (5 ' ) G (New England Biolabs) , DTT 10 mM, una mezcla de rNTPs 1 mM, 50 unidades de inhibidor de ARNsa (Promega) , y 30 unidades de SP6 ARN polimerasa (New England Biolabs) en un volumen final de 50 μΐ, produciendo 50 g de ARN. Se mezclaron aproximadamente 25 g de ARN sintetizado in vitro con 5xl06 células BHK-21 y se electroporaron en una cubeta de 0,4 cm mediante la aplicación de dos pulsos consecutivos a 800 V y 25 F. Estas condiciones de electroporación se utilizan de forma rutinaria con el sistema de SFV y permiten la transfección de más del 95% de las células. Después de la electroporación, las células se diluyeron en 15 mi de medio completo de BHK (Glasgow MEM, Gibco BRL, UK, suplementado con FBS al 5%, caldo triptosa fosfato al 10%, glutamina 2 mM, HEPES 20 mM, estreptomicina 100 μg/ml y penicilina 100 IU/ml) , sembrados en placas de 6 pocilios (1,5 ml/placa) y se incubaron a 37°C con C02 al 5%. Después de 4 h, se extrajo el medio y se sustituyó por 1 mi de medio completo de BHK sin FBS. 20h más tarde, se recogieron los sobrenadantes y se analizaron mediante transferencia Western con un anticuerpo especifico para GDNF (Figura 4B) . Se observó una expresión muy elevada de hGDNF en dos experimentos por duplicado (canales 1 y 2) . La proteina presentaba un patrón de glicosilación similar al obtenido en el hGDNF secretado por células MDX-12 (lenti GDNF) , pero mucho más complejo que el observado en GDNF de rata expresado a partir de un vector de baculovirus en células de insectos (GDNF de insecto) (R&D systems) . 3.3 Síntesis diferencial de proteínas en células BHK transfectadas con vector SFV-hGDNF Plasmid pSFV-hGDNF was linearized with Spel and used as a template for RNA synthesis using SP6 polymerase as previously described (Liljestrom and Garoff, 1994). Briefly, 1.5 g of linearized pSFV-hGDNF DNA was incubated for 1 h at 37 ° C in SP6 buffer supplemented with 1 mM of m 7 G (5 ' ) ppp (5 ' ) G (New England Biolabs), DTT 10 mM, a mixture of 1 mM rNTPs, 50 units of RNAse inhibitor (Promega), and 30 units of SP6 RNA polymerase (New England Biolabs) in a final volume of 50 μΐ, producing 50 g of RNA. Approximately 25 g of RNA synthesized in vitro were mixed with 5 x 10 6 BHK-21 cells and electroporated in a 0.4 cm cuvette by applying two consecutive pulses at 800 V and 25 F. These electroporation conditions are used in a manner Routine with the SFV system and allow transfection of more than 95% of the cells. After electroporation, the cells were diluted in 15 ml of complete BHK medium (Glasgow MEM, Gibco BRL, UK, supplemented with 5% FBS, 10% tryptose phosphate broth, 2 mM glutamine, 20 mM HEPES, 100 streptomycin 100 μg / ml and penicillin 100 IU / ml), seeded in 6-well plates (1.5 ml / plate) and incubated at 37 ° C with 5% C0 2 . After 4 h, the medium was removed and replaced with 1 ml of complete BHK medium without FBS. 20h later, the supernatants were collected and analyzed by Western blotting with an antibody specific for GDNF (Figure 4B). Very high expression of hGDNF was observed in two duplicate experiments (channels 1 and 2). The protein had a glycosylation pattern similar to that obtained in hGDNF secreted by MDX-12 cells (GDNF lenti), but much more complex than that observed in rat GDNF expressed from a baculovirus vector in insect cells (GDNF of insect) (R&D systems). 3.3 Differential synthesis of proteins in BHK cells transfected with SFV-hGDNF vector
Se e lectroporaron 5xl06 células BHK por duplicado con ARN de SFV-hGDNF y sin ARN (control) tal como se ha descrito. Se pusieron en tres placas de 35 cm2 con 5 x 105 células de cada electroporación y se incubaron con medio completo BHK a 33°C con C02 al 5%. En una placa de cada electroporación se eliminó el medio a las 4 horas después del plaqueo, se lavaron las células dos veces con PBS y se añadió 1 mi del mismo medio sin suero. En la segunda y tercera placa, se siguió el mismo procedimiento, pero cambiando el medio a las 6 h u 8 h después de la electroporación. Se analizaron todos los sobrenadantes mediante transferencia Western con anticuerpos contra GDNF, IGFBP-5, o IGFBP-4, una proteína que también es producida normalmente por células BHK (figura 5B) . El nivel de expresión de hGDNF en células electroporadas con SFV-hGDNF de dos experimentos duplicados fue muy similar. Sin embargo, la IGFBP-5 no se pudo detectar en el sobrenadante de células transfectadas con SFV- hGDNF. En cambio, se detectó una expresión elevada de IGFBP-5 en las células control. La expresión de otras proteínas secretadas normalmente por células BHK, como IGFBP-4, también desapareció completamente en células transfectadas con el vector de SFV (Figura 5B) . 5xl0 6 BHK cells were duplicated with duplicate with SFV-hGDNF RNA and without RNA (control) as described. They were placed on three 35 cm 2 plates with 5 x 10 5 cells from each electroporation and incubated with BHK complete medium at 33 ° C with 5% C0 2 . In a plate of each electroporation the medium was removed at 4 hours after plating, the cells were washed twice with PBS and 1 ml of the same medium without serum was added. In the second and third plates, the same procedure was followed, but changing the medium at 6 or 8 hours after electroporation. All supernatants were analyzed by Western blotting with antibodies against GDNF, IGFBP-5, or IGFBP-4, a protein that is also normally produced by BHK cells (Figure 5B). The level of hGDNF expression in electroporated cells with SFV-hGDNF from two duplicate experiments was very similar. However, IGFBP-5 could not be detected in the supernatant of cells transfected with SFV-hGDNF. Instead, an elevated expression of IGFBP-5 was detected in the control cells. The expression of other proteins normally secreted by BHK cells, such as IGFBP-4, also disappeared completely in cells transfected with the SFV vector (Figure 5B).
3.4 Optimización 3.4 Optimization
La expresión de hGDNF en células BHK electroporadas con SFV- hGDNF se optimizó mediane el ensayo con diferentes temperaturas y tiempos de incubación (véase la Tabla 1) Se electroporaron células BHK con ARN de SFV-hGDNF tal como se ha descrito. Se pusieron aproximadamente 5 x 105 células electroporadas en placas de 35 era2 y se incubaron con medio completo BHK a 33°C con C02 al 5% durante diferentes tiempos que llamaremos "Inhibición". Después de 1 tiempo de inhibición se eliminó el medio, se lavaron las placas 2 veces con PBS y se añadió 1 mi de medio completo de BHK sin suero. Se incubaron las células durante diferentes tiempos que denominaremos "Incubación" y se recogieron los sobrenadantes. La presencia de hGDNF en cada sobrenadante se determinó mediante transferencia Western. Dado que la cantidad de proteínas endógenas presentes en el medio de cultivo de células BHK transfectadas con el vector SFV-hGDNF fue muy baja, se concentraron 400 μΐ de cada sobrenadante mediante precipitación con ácido tricloroacético . Con el fin de evaluar la eficacia de la inhibición de la síntesis de proteínas endógenas celulares, se analizó la presencia de IGFBP-4, que es secretada de manera eficaz por células BHK, mediante transferencia Western en las muestras concentradas. La cantidad relativa de hGDNF (en muestras no concentradas) e IGFBP-4 (en muestras concentradas) se estimó midiendo la densidad óptica (DO) de cada banda. El mayor rendimiento de hGDNF con ausencia total de expresión de IGFBP-4 se obtuvo cuando el tiempo de inhibición fue de 8 h y el de incubación de 24 h, incubando las células en ambos periodos a 33°C (Tabla 1) . Estas condiciones se utilizaron en experimentos de purificación (parte 3.5.) The expression of hGDNF in BHK cells electroporated with SFV-hGDNF was optimized by assay with different temperatures and incubation times (see Table 1) BHK cells were electroporated with SFV-hGDNF RNA as described. Approximately 5 x 10 5 electroporated cells were placed on 35 era 2 plates and incubated with BHK complete medium at 33 ° C with 5% C0 2 for different times that we will call "Inhibition". After 1 time of inhibition the medium was removed, the plates were washed twice with PBS and 1 ml of BHK complete medium without serum was added. The cells were incubated for different times that we will call "Incubation" and the supernatants were collected. The presence of hGDNF in each supernatant was determined by Western blotting. Since the amount of endogenous proteins present in the culture medium of BHK cells transfected with the SFV-hGDNF vector was very low, 400 µΐ of each supernatant was concentrated by precipitation with trichloroacetic acid. In order to evaluate the effectiveness of the inhibition of the synthesis of endogenous cellular proteins, the presence of IGFBP-4, which is efficiently secreted by BHK cells, was analyzed by Western blotting in the concentrated samples. The relative amount of hGDNF (in unconcentrated samples) and IGFBP-4 (in concentrated samples) was estimated by measuring the optical density (OD) of each band. The highest hGDNF yield with total absence of IGFBP-4 expression was obtained when the inhibition time was 8 h and that of 24 h incubation, incubating the cells in both periods at 33 ° C (Table 1). These conditions were used in purification experiments (part 3.5.)
Tabla 1: Optimización de la expresión de hGDNF en células BHK electroporadas con SFV-hGDNF Table 1: Optimization of hGDNF expression in electroporated BHK cells with SFV-hGDNF
Inhibición Incubación DO Ratio Inhibition Incubation DO Ratio
GDNF/ IGFBP  GDNF / IGFBP
-4  -4
rj a Tiem Ta (°C) Tiemp GDNF IGFBP rj a Tiem T a (° C) Tiemp GDNF IGFBP
(°C) po o (h) -4  (° C) po o (h) -4
(h)  (h)
37 4 37 24 44,74 12, 32 3, 63 37 8 37 24 33,32 0 37 4 37 24 44.74 12, 32 3, 63 37 8 37 24 33.32 0
37 4 33 24 57,50 10,49 5,48  37 4 33 24 57.50 10.49 5.48
37 8 33 24 42,75 0  37 8 33 24 42.75 0
37 4 33 48 70,74 50,39 1,40  37 4 33 48 70.74 50.39 1.40
37 8 33 48 86,76 54, 98 1, 58  37 8 33 48 86.76 54, 98 1, 58
33 4 33 24 72,47 35, 40 2, 05  33 4 33 24 72.47 35, 40 2, 05
33 8 33 24 49,04 0  33 8 33 24 49.04 0
33 12 33 24 43,78 0  33 12 33 24 43.78 0
33 24 33 24 31, 97 14,07 2,27  33 24 33 24 31, 97 14.07 2.27
33 4 33 48 100, 44 44,22 2,27  33 4 33 48 100, 44 44.22 2.27
33 8 33 48 67, 65 15,57 4, 34  33 8 33 48 67, 65 15.57 4, 34
33 12 33 48 65, 53 20, 61 3,18  33 12 33 48 65, 53 20, 61 3.18
33 24 33 48 39,51 86,22 0,46  33 24 33 48 39.51 86.22 0.46
3.5. Purificación de hGDNF del medio condicionado de células BHK transfectadas con SFV-hGDNF Purificación 1 3.5. Purification of hGDNF from the conditioned medium of BHK cells transfected with SFV-hGDNF Purification 1
Se electroporaron un total de 108 células BHK con 500 de ARN de SFV-hGDNF sintetizado in vitro tal como se ha descrito (20 electroporaciones de 5xl06 células BHK con 25 de cada ARN) . Las células electroporadas se agruparon, se resuspendieron en un volumen total de 200 mi de medio completo BHK, y se distribuyeron en 10 frascos de cultivo de 75 era2. Después de 8 horas de incubación a 33° C con C02 al 5%, se eliminó el medio, las células se lavaron dos veces con 10 mi de PBS (cada frasco) , y se añadieron 10 mi de medio completo BHK sin FBS. 24 h después, se recogió el medio condicionado de todos los frascos, se centrifugó a 1200 rpm para eliminar restos celulares y se congeló . La purificación de hGDNF se realizó a partir de un volumen total de 95 mi de medio condicionado de células BHK transfectadas con SFV-hGDNF. El medio se descongeló, se ajustó el pH a 8,2 con NaOH y se filtró a través de una unidad de filtración de 0,22 μιτι. Como en el protocolo anterior, la muestra se pasó a través de la resina SP-Sefarosa (0,2 mi) . En este caso, la resina se empaquetó en una columna desechable (Bio-Rad) y la muestra se dejó fluir a través de la columna por gravedad a 4°C. La columna se lavó con 10 volúmenes de columna (CV) de tampón fosfato 10 mM a pH 8,2, NaCl 150 mM y EDTA 5 mM . Dado que el hGDNF es la principal proteina presente en el medio condicionado, la proteina unida a la resina se eluyó en una única etapa con 2 mi de NaCl 0,5 M. Además se realizó una elución adicional con NaCl 1 M para asegurar que todo el hGDNF unido se habla eluido de la resina . A total of 10 8 BHK cells were electroporated with 500 of SFV-hGDNF RNA synthesized in vitro as described (20 electroporations of 5 x 10 6 BHK cells with 25 of each RNA). The electroporated cells were pooled, resuspended in a total volume of 200 ml of complete BHK medium, and distributed in 10 culture jars of 75 was 2 . After 8 hours of incubation at 33 ° C with 5% C0 2 , the medium was removed, the cells were washed twice with 10 ml of PBS (each bottle), and 10 ml of BHK complete medium without FBS was added. 24 h later, the conditioned medium was collected from all the bottles, centrifuged at 1200 rpm to remove cell debris and frozen. Purification of hGDNF was performed from a total volume of 95 ml of conditioned medium of BHK cells transfected with SFV-hGDNF. The medium was thawed, the pH was adjusted to 8.2 with NaOH and filtered through a 0.22 filtration unit μιτι. As in the previous protocol, the sample was passed through the SP-Sepharose resin (0.2 ml). In this case, the resin was packaged in a disposable column (Bio-Rad) and the sample was allowed to flow through the column by gravity at 4 ° C. The column was washed with 10 column volumes (CV) of 10 mM phosphate buffer at pH 8.2, 150 mM NaCl and 5 mM EDTA. Since hGDNF is the main protein present in the conditioned medium, the resin-bound protein was eluted in a single stage with 2 ml of 0.5 M NaCl. Additionally, an additional elution was performed with 1 M NaCl to ensure that all The bound hGDNF is spoken eluted from the resin.
La única proteina presente en la elución era hGDNF, tal como se detecta mediante SDS-PAGE seguido de tinción con Azul de Coomassie (figura 6A) y confirmado mediante transferencia Western (Figura 6B) . El hGDNF presente en el medio condicionado y en el eluido de la columna de intercambio catiónico se cuantificó mediante ELISA. En resumen se partió de una cantidad inicial de 62 g de hGDNF en 95 mi de medio y se obtuvieron 16 g de hGDNF en 2 mi, recuperando asi el 26% de la proteina contenida en la muestra inicial. Este proceso de purificación global duró solo tres días (Figura 8) . The only protein present in the elution was hGDNF, as detected by SDS-PAGE followed by staining with Coomassie Blue (Figure 6A) and confirmed by Western blotting (Figure 6B). The hGDNF present in the conditioned medium and in the elution of the cation exchange column was quantified by ELISA. In summary, an initial amount of 62 g of hGDNF was started in 95 ml of medium and 16 g of hGDNF was obtained in 2 ml, thus recovering 26% of the protein contained in the initial sample. This global purification process lasted only three days (Figure 8).
Purificación 2 Purification 2
Se electroporaron un total de 5xl08 células BHK con 2500 g de ARN de SFV-hGDNF sintetizado in vitro tal como se ha descrito (100 electroporaciones de 5xl06 células BHK con 25 g de cada ARN) . Las células electroporadas se agruparon, se resuspendieron en un volumen total de 600 mi de medio completo BHK, y se distribuyeron en 50 frascos de cultivo de 75 era2. Después de 8 horas de incubación a 33° C con C02 al 5%, se eliminó el medio, las células se lavaron dos veces con 10 mi de PBS (cada frasco) , y se añadieron 10 mi de medio completo BHK sin FBS. 24 h después, se recogió el medio condicionado de todos los frascos, se centrifugó a 1200 rpm para eliminar restos celulares y se congeló . La purificación de hGDNF se realizó a partir de un volumen total de 570 mi de medio condicionado de células BHK transfectadas con SFV-hGDNF. El medio se descongeló, se ajustó el pH a 8,2 con NaOH y se filtró a través de una unidad de filtración de 0,22 μιτι. Como en el protocolo anterior, la muestra se pasó a través de la resina SP-Sefarosa (0,2 mi) . En este caso, la resina se empaquetó en una columna desechable (Bio-Rad) y la muestra se dejó fluir a través de la columna por gravedad a 4°C. La columna se lavó con 10 volúmenes de columna (CV) de tampón fosfato 10 mM a pH 8,2, NaCl 150 mM y EDTA 5 mM. Dado que el hGDNF es la principal proteina presente en el medio condicionado, la proteina unida a la resina se eluyó en una única etapa con 0.4 mi de NaCl 0,5 M. Además se realizó una elución adicional con NaCl 1 M para asegurar que todo el hGDNF unido se habla eluido de la resina. A total of 5xl0 8 BHK cells were electroporated with 2500 g of SFV-hGDNF RNA synthesized in vitro as described (100 electroporations of 5xl0 6 BHK cells with 25 g of each RNA). The electroporated cells were pooled, resuspended in a total volume of 600 ml of complete BHK medium, and distributed in 50 culture jars of 75 was 2 . After 8 hours of incubation at 33 ° C with 5% C0 2 , the medium was removed, the cells were washed twice with 10 ml of PBS (each bottle), and 10 ml of BHK complete medium without FBS was added. 24 h later, the conditioned medium was collected from all the bottles, centrifuged at 1200 rpm to remove cell debris and frozen. Purification of hGDNF was performed from a total volume of 570 ml of conditioned medium of BHK cells transfected with SFV-hGDNF. The medium was thawed, the pH was adjusted to 8.2 with NaOH and filtered through a 0.22 μιτι filtration unit. As in the previous protocol, the sample was passed through the SP-Sepharose resin (0.2 ml). In this case, the resin was packaged in a disposable column (Bio-Rad) and the sample was allowed to flow through the column by gravity at 4 ° C. The column was washed with 10 column volumes (CV) of 10 mM phosphate buffer at pH 8.2, 150 mM NaCl and 5 mM EDTA. Since hGDNF is the main protein present in the conditioned medium, the resin-bound protein was eluted in a single stage with 0.4 ml of 0.5 M NaCl. Additionally, an additional elution was performed with 1 M NaCl to ensure that all The bound hGDNF is spoken eluted from the resin.
La única proteina presente en la elución era hGDNF, tal como se detectó mediante SDS-PAGE seguido de tinción con Azul de Coomassie y confirmado mediante transferencia Western. El hGDNF presente en el medio condicionado y en el eluido de la columna de intercambio catiónico se cuantificó mediante ELISA. En resumen se partió de una cantidad inicial de 756 g de hGDNF en 570 mi de medio y se obtuvieron 445 g de hGDNF en un volumen de 0.4 mi, recuperando asi el 58% de la proteina contenida en la muestra inicial. Este proceso de purificación global duró solo cinco días (Figura 8) .  The only protein present in the elution was hGDNF, as detected by SDS-PAGE followed by staining with Coomassie Blue and confirmed by Western blotting. The hGDNF present in the conditioned medium and in the elution of the cation exchange column was quantified by ELISA. In summary, an initial amount of 756 g of hGDNF was started in 570 ml of medium and 445 g of hGDNF were obtained in a volume of 0.4 ml, thus recovering 58% of the protein contained in the initial sample. This global purification process lasted only five days (Figure 8).
3.6 Bioactividad del hGDNF purificado de células BHK transfectadas con SFV-hGDNF 3.6 Bioactivity of purified hGDNF from BHK cells transfected with SFV-hGDNF
Para comprobar la actividad biológica del hGDNF purificado, se añadieron 50 ng/ml al medio de cultivo de baja densidad (2xl03 células/cm2) de células PC12 crecidas en placas recubiertas por colágeno. La Figura 7 muestra que el hGDNF glicosilado induce el crecimiento de neuritas en células PC12 de la misma manera que el hGDNF comercial no glicosilado (Invitrogen) , que fue usado como control positivo. 3.7 Estabilidad del hGDNF purificado de células BHK transfectadas con SFV-hGDNF To check the biological activity of the purified hGDNF, 50 ng / ml was added to the low density culture medium (2 x 10 3 cells / cm 2 ) of PC12 cells grown on collagen coated plates. Figure 7 shows that glycosylated hGDNF induces the growth of neurites in PC12 cells in the same manner as commercial non-glycosylated hGDNF (Invitrogen), which was used as a positive control. 3.7 Stability of purified hGDNF of BHK cells transfected with SFV-hGDNF
Para analizar la estabilidad del GDNF glicosilado humano obtenido, 220 ng de GDNF glicosilado humano purificado de células BHK trans fectadas con SFV-hGDNF y la misma cantidad de GDNF no glicosilada de E. coli (ProSpec) se incubaron en 220 μΐ de tampón fosfato a pH 7,4 a temperatura ambiente. Se tomaron alícuotas de 10 mi a las 24, 48, 96 horas, 1, 2 y 3 semanas y se analizó la presencia de hGDNF mediante transferencia Western. La figura 9 muestra un panel superior correspondiente al hGDNF glicosilado y un panel inferior correspondiente al hGDNF no glicosilado. Es posible apreciar cómo la mayoría de la proteína no glicosilada se degrada después de 24 horas de incubación y desaparece después de 48 horas. Sin embargo, el hGDNF glicosilado aún está presente después de 3 semanas de incubación a temperatura ambiente.  To analyze the stability of the obtained human glycosylated GDNF, 220 ng of purified human glycosylated GDNF from transfected BHK cells feeded with SFV-hGDNF and the same amount of non-glycosylated GDNF from E. coli (ProSpec) were incubated in 220 μΐ of phosphate buffer a pH 7.4 at room temperature. 10 ml aliquots were taken at 24, 48, 96 hours, 1, 2 and 3 weeks and the presence of hGDNF was analyzed by Western blotting. Figure 9 shows an upper panel corresponding to the glycosylated hGDNF and a lower panel corresponding to the non-glycosylated hGDNF. It is possible to appreciate how the majority of the non-glycosylated protein degrades after 24 hours of incubation and disappears after 48 hours. However, glycosylated hGDNF is still present after 3 weeks of incubation at room temperature.
Conclusión : Conclusion :
Dado que el hGDNF glicosilado no está comercialmente disponible, se han descrito previamente métodos para purificar GDNF glicosilado (Garbayo et al., 2007 and Ansorena et al., 2009) a partir de células de mamífero y se ha utilizado la misma metodología con algunas modificaciones para obtener hGDNF glicosilado puro. Sin embargo, esta metodología es extremadamente laboriosa y requiere de mucho tiempo para producir cantidades elevadas de hGDNF con fines clínicos . En el presente estudio, se propone un método nuevo y sencillo para obtener cantidades elevadas de hGDNF purificado. Se ha demostrado que en células BHK transfectadas con un vector SFV que expresa hGDNF, esta proteína se produce a niveles elevados en el sobrenadante. Si se elimina el medio celular aproximadamente 8 horas después de la transfeccion, el hGDNF se convierte en la única proteína expresada en los sobrenadantes de estas células, ya que el vector de SFV induce una fuerte inhibición de la síntesis de proteínas celulares endógenas. Esto hace que la purificación de hGDNF sea muy sencilla y eficaz, especialmente porque las proteínas endógenas que eran difíciles de eliminar en el proceso de purificación, como la IGFBP-5, han dejado de ser expresadas por las células productoras. Además, el hGDNF producido con este método está altamente glicosilado, lo que hace la proteina más estable y probablemente menos inmunogénica, a diferencia del hGDNF producido utilizando sistemas bacterianos. Since glycosylated hGDNF is not commercially available, methods for purifying glycosylated GDNF (Garbayo et al., 2007 and Ansorena et al., 2009) from mammalian cells have been previously described and the same methodology has been used with some modifications to obtain pure glycosylated hGDNF. However, this methodology is extremely laborious and requires a lot of time to produce high amounts of hGDNF for clinical purposes. In the present study, a new and simple method is proposed to obtain high amounts of purified hGDNF. It has been shown that in BHK cells transfected with an SFV vector expressing hGDNF, this protein is produced at elevated levels in the supernatant. If the cellular medium is removed approximately 8 hours after transfection, hGDNF becomes the only protein expressed in the supernatants of these cells, since the SFV vector induces a strong inhibition of the synthesis of endogenous cellular proteins. This makes purification of hGDNF very simple and effective, especially because the endogenous proteins that were difficult of eliminating in the purification process, such as IGFBP-5, have ceased to be expressed by the producing cells. In addition, the hGDNF produced with this method is highly glycosylated, which makes the protein more stable and probably less immunogenic, unlike the hGDNF produced using bacterial systems.
El hGDNF glicosilado podría ser muy útil para el tratamiento de la enfermedad de Parkinson u otros trastornos degenerativos, ya que su mayor estabilidad sugiere que serían necesarias dosis menores de esta proteína para el uso terapéutico en comparación con hGDNF no glicosilado. Glycosylated hGDNF could be very useful for the treatment of Parkinson's disease or other degenerative disorders, since its greater stability suggests that lower doses of this protein would be necessary for therapeutic use compared to non-glycosylated hGDNF.
Referencias Ansorena E, Garbayo E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ. Production of highly pure human glycosylated GDNF in a mammalian cell line. Int J Pharm. 2010 Jan 29; 385 (1-2 ) : 6-11. Epub 2009 Oct 13. ; References Ansorena E, Garbayo E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ. Production of highly pure human glycosylated GDNF in a mammalian cell line. Int J Pharm. 2010 Jan 29; 385 (1-2): 6-11. Epub 2009 Oct 13.;
Blasey HD, Lundstróm K, Tate S, Bernard AR. Recombinant protein production using the Semliki Forest Virus expression system. Cytotechnology, 1997; 24: 65-72.  Blasey HD, Lundstróm K, Tate S, Bernard AR. Recombinant protein production using the Semliki Forest Virus expression system. Cytotechnology, 1997; 24: 65-72.
Forsman T, Lautala P, Lundstróm K, Monastyrskaia K, Ouzzine M, Burchell B, Taskinen J, Ulmanen I. Life Sci . 2000 Oct 6; 67 (20) :2473-2484.  Forsman T, Lautala P, Lundstróm K, Monastyrskaia K, Ouzzine M, Burchell B, Taskinen J, Ulmanen I. Life Sci. 2000 Oct 6; 67 (20): 2473-2484.
Garbayo E, Ansorena E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ. Purification of bioactive glycosylated recombinant glial cell line-derived neurotrophic factor. Int J Pharm 2007; 344: 9- 15. Garbayo E, Ansorena E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ. Purification of bioactive glycosylated recombinant glial cell line-derived neurotrophic factor. Int J Pharm 2007; 344: 9-15.
Liljestrom, P., and H. Garoff. 1991. A ne generation of animal cell expression vectors based on the Semliki Forest virus replicón. Biotechnology (N Y) 9:1356-61.  Liljestrom, P., and H. Garoff. 1991. A ne generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N Y) 9: 1356-61.
Liljestrom P, Garoff H. Expession of proteins using Semliki Forest virus vectors. In Current protocole in molecular biology (F. M. Ausubel, et al., Eds . ) , pp. 16.20.11-16.20.16. Greene Publishing Associates and Wiley Interscience, New York, N.Y. 1994. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993; 260: 1130-2. Liljestrom P, Garoff H. Expession of proteins using Semliki Forest virus vectors. In Current protocole in molecular biology (FM Ausubel, et al., Eds.), Pp. 16.20.11-16.20.16. Greene Publishing Associates and Wiley Interscience, New York, NY 1994. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993; 260: 1130-2.
Lundstrom K. Semliki Forest virus vectors for large-scale production of recombinant proteins. Methods Mol Med 2003a; 76: 525-43.  Lundstrom K. Semliki Forest virus vectors for large-scale production of recombinant proteins. Methods Mol Med 2003a; 76: 525-43.
Moretto G, Walker DG, Lanteri P, Taioli F, Zaffagnini S, Xu RY, et al . Expression and regulation of glial-cell-line-derived neurotrophic factor (GDNF) mRNA in human astrocytes in vitro. Cell Tissue Res 1996; 286: 257-62.  Moretto G, Walker DG, Lanteri P, Taioli F, Zaffagnini S, Xu RY, et al. Expression and regulation of glial-cell-line-derived neurotrophic factor (GDNF) mRNA in human astrocytes in vitro. Cell Tissue Res 1996; 286: 257-62.
Pushko, P., Parker, M., Ludwig, G. V., Davis, N. L., Johnston, R. E., and Smith, J. F. (1997) . Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology. 239: 389-401.  Pushko, P., Parker, M., Ludwig, G. V., Davis, N. L., Johnston, R. E., and Smith, J. F. (1997). Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239: 389-401.
Rodriguez-Madoz JR, Prieto J, Smerdou C. Semliki forest virus vectors engineered to express higher IL-12 levéis induce efficient elimination of murine colon adenocarcinomas . Mol Ther 2005; 12: 153-63.  Rodriguez-Madoz JR, Prieto J, Smerdou C. Semliki forest virus vectors engineered to express higher IL-12 levéis induces efficient elimination of murine colon adenocarcinomas. Mol Ther 2005; 12: 153-63.
Ryan MD, Dre J. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. Embo J 1994; 13: 928-33. Ryan MD, Dre J. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. Embo J 1994; 13: 928-33.
Sajadi A, Bensadoun JC, Schneider BL, Lo Bianco C, Aebischer P. Transient striatal delivery of GDNF via encapsulated cells leads to sustained behavioral improvement in a bilateral model of Parkinson disease. Neurobiol Dis 2006; 22: 119-29.  Sajadi A, Bensadoun JC, Schneider BL, Lo Bianco C, Aebischer P. Transient striatal delivery of GDNF via encapsulated cells leads to sustained behavioral improvement in a bilateral model of Parkinson disease. Neurobiol Dis 2006; 22: 119-29.
Smerdou, C., and P. Liljestrom. 1999. T o-helper RNA system for production of recombinant Semliki forest virus partióles. J Virol 73:1092-8.  Smerdou, C., and P. Liljestrom. 1999. T o-helper RNA system for production of recombinant Semliki forest virus partiols. J Virol 73: 1092-8.
Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 2006; 24: 1241- 52. Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 2006; 24: 1241-52.
Xiong, C., Levis, R. , Shen, P., Schlesinger, S., Rice, C. M. , and Huang, H. V. (1989) . Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science. 243: 1188-1191.  Xiong, C., Levis, R., Shen, P., Schlesinger, S., Rice, C. M., and Huang, H. V. (1989). Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243: 1188-1191.

Claims

REIVINDICACIONES
1. Método para la producción de GDNF recombinante humano, o de una variante funcionalmente equivalente del mismo, que comprende : 1. Method for the production of human recombinant GDNF, or a functionally equivalent variant thereof, comprising:
a) proporcionar células eucariotas que comprenden un vector de expresión de alfavirus, comprendiendo dicho vector los ácidos nucleicos de i) una secuencia 5' capaz de dirigir la replicación del alfavirus; ii) una secuencia que codifica para proteínas no estructurales capaces de dirigir la replicación del ARN alfaviral; iii) un promotor subgenómico del alfavirus; iv) una secuencia que codifica una proteína GDNF humana recombinante, o una variante f u n c i o n a 1 m e n t e equivalente de la misma, unida operativamente al promotor subgenómico que dirige la expresión de la proteína en las células eucariotas; v) una secuencia 3' capaz de dirigir la replicación del alfavirus;  a) providing eukaryotic cells comprising an alphavirus expression vector, said vector comprising the nucleic acids of i) a 5 'sequence capable of directing the replication of the alphavirus; ii) a sequence coding for non-structural proteins capable of directing the replication of alphaviral RNA; iii) a subgenomic promoter of the alphavirus; iv) a sequence encoding a recombinant human GDNF protein, or a variant f u n c i or n at 1 m e n t and equivalent thereof, operatively linked to the subgenomic promoter that directs the expression of the protein in eukaryotic cells; v) a 3 'sequence capable of directing the replication of the alphavirus;
b) cultivar o incubar dichas células eucariotas en un medio de cultivo hasta que se inhiba la síntesis de proteínas endógenas celulares;  b) culturing or incubating said eukaryotic cells in a culture medium until the synthesis of endogenous cellular proteins is inhibited;
c) eliminar el sobrenadante;  c) remove the supernatant;
d) cultivar o incubar dichas células eucariotas en un medio de cultivo durante un periodo de tiempo, de manera que se consigue la expresión de la proteína GDNF recombinante, pero sin muerte celular; y  d) culturing or incubating said eukaryotic cells in a culture medium for a period of time, so that the expression of the recombinant GDNF protein is achieved, but without cell death; Y
e) purificar el GDNF recombinante del medio de cultivo.  e) purify the recombinant GDNF from the culture medium.
2. Método según la reivindicación 1, que comprende además una etapa f) de purificación de la proteína hGDNF recombinante mediante cromatografía. 2. A method according to claim 1, further comprising a step f) of purification of the recombinant hGDNF protein by chromatography.
3. Método según cualquiera de las reivindicaciones 1-2, en el que el cultivo o la incubación de las etapas b) o d) se realiza a una temperatura entre 30° y 40° C durante un periodo de tiempo de 2 a 50 horas. 3. Method according to any of claims 1-2, wherein the culture or incubation of steps b) or d) is carried out at a temperature between 30 ° and 40 ° C for a period of time from 2 to 50 hours.
4. Método según cualquiera de las reivindicaciones 1-2, en el que el cultivo o la incubación de la etapa b) se realiza a una temperatura de 33° C durante 8 horas. 5. Método según cualquiera de las reivindicaciones 1-4, en el que el cultivo o la incubación de la etapa d) se realiza a una temperatura de 33° C durante 24 horas. 4. Method according to any of claims 1-2, wherein the culture or incubation of step b) is carried out at a temperature of 33 ° C for 8 hours. 5. Method according to any of claims 1-4, wherein the culture or incubation of step d) is carried out at a temperature of 33 ° C for 24 hours.
Método según cualquiera de las reivindicaciones 1 a 5 en donde las condiciones de las etapas b) y d) se seleccionan del grupo consistente en: Method according to any one of claims 1 to 5 wherein the conditions of steps b) and d) are selected from the group consisting of:
(i) la etapa b) se lleva a cabo a aproximadamente 37° durante aproximadamente 8 h y la etapa d) se lleva a cabo a aproximadamente 37° durante aproximadamente 24h;  (i) step b) is carried out at approximately 37 ° for approximately 8 h and stage d) is carried out at approximately 37 ° for approximately 24 h;
(ii) la etapa b) se lleva a cabo a aproximadamente 37° durante aproximadamente 8 h y la etapa d) se lleva a cabo a aproximadamente 33° durante aproximadamente 24h;  (ii) step b) is carried out at approximately 37 ° for approximately 8 h and stage d) is carried out at approximately 33 ° for approximately 24 h;
(iii) la etapa b) se lleva a cabo a aproximadamente 33° durante aproximadamente 8 h y la etapa d) se lleva a cabo a aproximadamente 33° durante aproximadamente 24h y  (iii) step b) is carried out at approximately 33 ° for approximately 8 h and stage d) is carried out at approximately 33 ° for approximately 24 h and
(iv) la etapa b) se lleva a cabo a aproximadamente 33° durante aproximadamente 12 h y la etapa d) se lleva a cabo a aproximadamente 33° durante aproximadamente 24h.  (iv) step b) is carried out at approximately 33 ° for approximately 12 h and stage d) is carried out at approximately 33 ° for approximately 24 h.
Método según cualquiera de las reivindicaciones 1-6, en el que el vector de expresión de alfavirus comprende además un vector de ARN transcrito in vitro . Method according to any of claims 1-6, wherein the alphavirus expression vector further comprises an in vitro transcribed RNA vector.
Método según cualquiera de las reivindicaciones 1-6, en el que el vector de expresión de alfavirus comprende además partículas virales que comprenden ARN de vector de alfavirus . A method according to any of claims 1-6, wherein the alphavirus expression vector further comprises viral particles comprising alphavirus vector RNA.
9. Método según cualquiera de las reivindicaciones 1-8, en el que el vector de expresión de alfavirus comprende además un promotor que es reconocible por una ARN polimerasa eucariota . 9. A method according to any of claims 1-8, wherein the alphavirus expression vector further comprises a promoter that is recognizable by a eukaryotic RNA polymerase.
10. Método según la reivindicación 9, en el que el promotor reconocible por una ARN polimerasa eucariota es el promotor de citomegalovirus (CMV) . 11. Método según cualquiera de las reivindicaciones 1-10, en el que el vector de expresión de alfavirus comprende además una secuencia que codifica para una proteina con actividad potenciadora de la traducción. 12. Método según la reivindicación 11, en el que la secuencia que codifica para una proteina con actividad potenciadora de la traducción es la secuencia que codifica por lo menos los primeros 34 aminoácidos de la cápside del virus de Semliki Forest (SFV) . 10. The method of claim 9, wherein the promoter recognizable by a eukaryotic RNA polymerase is the cytomegalovirus (CMV) promoter. 11. A method according to any of claims 1-10, wherein the alphavirus expression vector further comprises a sequence encoding a protein with translation enhancing activity. 12. The method according to claim 11, wherein the sequence encoding a protein with translation enhancing activity is the sequence encoding at least the first 34 amino acids of the Semliki Forest virus (SFV) capsid.
13. Método según cualquiera de las reivindicaciones 11 y 12, en el que el vector de expresión de alfavirus comprende además una secuencia que codifica una proteasa de auto-escisión o una secuencia diana para una proteasa celular. 13. A method according to any of claims 11 and 12, wherein the alphavirus expression vector further comprises a sequence encoding a self-cleavage protease or a target sequence for a cellular protease.
14. Método según la reivindicación 13, en el que la secuencia que codifica una proteasa de auto-escisión o la secuencia diana para una proteasa celular se expresa en fase con la secuencia con actividad potenciadora de la traducción. 14. A method according to claim 13, wherein the sequence encoding a self-cleavage protease or the target sequence for a cellular protease is expressed in phase with the sequence with translation enhancing activity.
15. Método según cualquiera de las reivindicaciones 13-14, en el que la secuencia que codifica una proteasa de auto-escisión es la autoproteasa 2A del virus de la fiebre aftosa (FMDV) . 16. Método según cualquiera de las reivindicaciones 13-15, en el que la secuencia de nucleótidos que codifica para el GDNF recombinante humano, o una variante funcionalmente equivalente del mismo, se fusiona en fase y en posición 3' con la secuencia que codifica para la proteasa de auto- escisión o la secuencia diana para una proteasa celular. 15. A method according to any of claims 13-14, wherein the sequence encoding a self-cleavage protease is FMDV 2A autoprotease (FMDV). 16. A method according to any of claims 13-15, wherein the nucleotide sequence encoding the human recombinant GDNF, or a functionally variant equivalent thereof, it is fused in phase and 3 ' position with the sequence encoding the self-cleavage protease or the target sequence for a cellular protease.
Método según cualquiera de las reivindicaciones 1-16, en el que el alfavirus es SFV. Method according to any of claims 1-16, wherein the alphavirus is SFV.
18. Método según cualquiera de las reivindicaciones 1-17, en el que las células eucariotas son células de mamífero seleccionadas entre BHK, CHO, VERO, y células de glioma C6 glioma . 18. Method according to any of claims 1-17, wherein the eukaryotic cells are mammalian cells selected from BHK, CHO, VERO, and C6 glioma glioma cells.
19. Vector de expresión de alfavirus tal como se define en cualquiera de las reivindicaciones 1-18. 19. Alphavirus expression vector as defined in any of claims 1-18.
20. Vector de expresión de alfavirus según la reivindicación 19 en donde dicho vector es citopático. 20. Alphavirus expression vector according to claim 19 wherein said vector is cytopathic.
21. Partícula alfaviral que comprende los ácidos nucleicos definidos para el vector de expresión de alfavirus según las reivindicaciones 1-20. 21. Alphaviral particle comprising the nucleic acids defined for the alphavirus expression vector according to claims 1-20.
22. Célula eucariota que comprende un vector de expresión de alfavirus tal como se define en cualquiera de las reivindicaciones 1-20. 22. Eukaryotic cell comprising an alphavirus expression vector as defined in any of claims 1-20.
23. Proteína de fusión que comprende la proteína de la cápside de SFV unida al GDNF humano, o una variante funcionalmente equivalente del mismo. 23. Fusion protein comprising the SFV capsid protein bound to human GDNF, or a functionally equivalent variant thereof.
24. Uso del vector de expresión de alfavirus según las reivindicaciones 19 o 20 para la producción del GDNF recombinante humano, o variantes funcionalmente equivalentes del mismo. 24. Use of the alphavirus expression vector according to claims 19 or 20 for the production of human recombinant GDNF, or functionally equivalent variants thereof.
25. Uso de una partícula alfaviral según la reivindicación 21, para la producción del GDNF recombinante humano, o variantes funcionalmente equivalentes del mismo. 25. Use of an alphaviral particle according to claim 21, for the production of human recombinant GDNF, or variants functionally equivalent thereof.
Uso de una célula eucariota según la reivindicación 22, para la producción del GDNF recombinante humano, o variantes funcionalmente equivalentes del mismo. Use of a eukaryotic cell according to claim 22, for the production of human recombinant GDNF, or functionally equivalent variants thereof.
Una composición que comprende GDNF humano o una variante funcionalmente equivalente de GDNF en donde el GDNF se encuentra glicosilado y en donde la composición A composition comprising human GDNF or a functionally equivalent variant of GDNF wherein the GDNF is glycosylated and where the composition
(i) comprende un porcentaje de GDNF en peso con respecto al total de proteina en la composición superior a 90% y/o  (i) comprises a percentage of GDNF by weight with respect to the total protein in the composition greater than 90% and / or
(ii) se encuentra sustancialmente libre de IGFBP-4,  (ii) is substantially free of IGFBP-4,
IGFBP-5 y/o IGFBP-7.  IGFBP-5 and / or IGFBP-7.
Una composición según la reivindicación 27 para su uso en medicina . A composition according to claim 27 for use in medicine.
29. Una composición según la reivindicación 27 para su uso en el tratamiento o la prevención de un trastorno neurodegenerativo . 29. A composition according to claim 27 for use in the treatment or prevention of a neurodegenerative disorder.
PCT/ES2010/070778 2009-11-26 2010-11-25 Viral vectors and methods used in the preparation of gdnf WO2011064437A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200931071 2009-11-26
ES200931071 2009-11-26

Publications (2)

Publication Number Publication Date
WO2011064437A2 true WO2011064437A2 (en) 2011-06-03
WO2011064437A3 WO2011064437A3 (en) 2011-08-18

Family

ID=43902938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070778 WO2011064437A2 (en) 2009-11-26 2010-11-25 Viral vectors and methods used in the preparation of gdnf

Country Status (1)

Country Link
WO (1) WO2011064437A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001196A3 (en) * 2010-06-28 2012-02-23 Proyecto De Biomedicina Cima, S.L. Propagative alphaviral expression vectors not forming functional nuclecapsids
ES2523016A1 (en) * 2013-05-20 2014-11-20 3P Biopharmaceuticals Alphaviral vectors and cell lines for producing recombinant proteins
CN106754755A (en) * 2015-11-23 2017-05-31 中国科学院武汉物理与数学研究所 A kind of replicon of SFV and its application in sparse or delicate nerves meta-tag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006116A1 (en) 1991-09-20 1993-04-01 Syntex-Synergen Neuroscience Joint Venture Glial derived neurotrophic factor
EP0736099A1 (en) 1993-12-23 1996-10-09 Zeneca Limited Expression of self-processing polyproteins in transgenic plants
US5739026A (en) 1990-12-13 1998-04-14 Bioption Ab DNA expression systems based on alphaviruses
EP1386926A1 (en) 2002-07-29 2004-02-04 Bioxtal Methods for producing labelled recombinant polypeptides and uses thereof
WO2008065225A2 (en) 2006-11-28 2008-06-05 Proyecto De Biomedicina Cima, S.L. Viral vector and uses thereof
WO2009089040A1 (en) 2008-01-11 2009-07-16 Jaffrey Samie R Methods for expressing proteins in axons

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030143205A1 (en) * 2001-07-20 2003-07-31 Oxford Biomedica (Uk) Limited Alphavirus expression systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739026A (en) 1990-12-13 1998-04-14 Bioption Ab DNA expression systems based on alphaviruses
WO1993006116A1 (en) 1991-09-20 1993-04-01 Syntex-Synergen Neuroscience Joint Venture Glial derived neurotrophic factor
EP0736099A1 (en) 1993-12-23 1996-10-09 Zeneca Limited Expression of self-processing polyproteins in transgenic plants
EP1386926A1 (en) 2002-07-29 2004-02-04 Bioxtal Methods for producing labelled recombinant polypeptides and uses thereof
WO2008065225A2 (en) 2006-11-28 2008-06-05 Proyecto De Biomedicina Cima, S.L. Viral vector and uses thereof
WO2009089040A1 (en) 2008-01-11 2009-07-16 Jaffrey Samie R Methods for expressing proteins in axons

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
"Current protocols in molecular biology", vol. 2, September 2006, GREENE PUBLISHING ASSOCIATES AND WILEY INTERSCIENCE
"Molecular cloning: a laboratory manual", 2001, COLD SPRING HARBOR
ALLANDER ET AL., J. BIOL. CHEM., vol. 269, pages 10891 - 8
ALTSCHUL, S. ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
ANSORENA E; GARBAYO E; LANCIEGO JL; AYMERICH MS; BLANCO-PRIETO MJ: "Production of highly pure human glycosylated GDNF in a mammalian cell line", INT J PHARM., vol. 385, no. 1-2, 29 January 2010 (2010-01-29), pages 6 - 11, XP026814015
BLASEY HD; LUNDSTROM K; TATE S; BERNARD AR: "Recombinant protein production using the Semliki Forest Virus expression system", CYTOTECHNOLOGY, vol. 24, 1997, pages 65 - 72, XP019236469, DOI: doi:10.1023/A:1007974121182
DAVIES, A.M.: "Neurotrophic", vol. 95, 1989, JOHN WILLEY AND SONS, LTD., article "Factor Bioassay Using Dissociated Neurons"
FORSMAN T; LAUTALA P; LUNDSTROM K; MONASTYRSKAIA K; OUZZINE M; BURCHELL B; TASKINEN J; ULMANEN I, LIFE SCI., vol. 67, no. 20, 6 October 2000 (2000-10-06), pages 2473 - 2484
GARBAYO E; ANSORENA E; LANCIEGO JL; AYMERICH MS; BLANCO-PRIETO MJ: "Purification of bioactive glycosylated recombinant glial cell line-derived neurotrophic factor", INT J PHARM, vol. 344, 2007, pages 9 - 15, XP022275347, DOI: doi:10.1016/j.ijpharm.2007.04.003
LATOUR ET AL., MOL. ENDOCRINOL., vol. 4, 1991, pages 1806 - 14
LILJESTR6M; GAROFF, BIO/TECHNOLOGY, vol. 9, 1991, pages 1356 - 1361
LILJESTROM P; GAROFF H ET AL.: "Current protocols in molecular biology", 1994, GREENE PUBLISHING ASSOCIATES AND WILEY INTERSCIENCE, article "Expession of proteins using Semliki Forest virus vectors", pages: 16.20.11 - 16.20.16
LILJESTROM, P.; H. GAROFF: "A new generation of animal cell expression vectors based on the Semliki Forest virus replicon", BIOTECHNOLOGY, vol. 9, 1991, pages 1356 - 61, XP000616021, DOI: doi:10.1038/nbt1291-1356
LIN ET AL., J.NEUROCHEM., vol. 63, 1994, pages 758 - 768
LIN LF; DOHERTY DH; LILE JD; BEKTESH S; COLLINS F: "GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons", SCIENCE, vol. 260, 1993, pages 1130 - 2
LUNDSTROM K.: "Semliki Forest virus vectors for large-scale production of recombinant proteins", METHODS MOL MED, vol. 76, 2003, pages 525 - 43
LUNDSTROM: "Methods in Molecular Medicine", vol. 76, HUMANA PRESS INC., article "Viral Vectors for Gene Therapy: Methods and Protocols"
MORETTO G; WALKER DG; LANTERI P; TAIOLI F; ZAFFAGNINI S; XU RY ET AL.: "Expression and regulation of glial-cell-line-derived neurotrophic factor (GDNF) mRNA in human astrocytes in vitro", CELL TISSUE RES, vol. 286, 1996, pages 257 - 62
PUSHKO ET AL., VIROLOGY, vol. 239, 1997, pages 389 - 401
PUSHKO, P.; PARKER, M.; LUDWIG, G. V.; DAVIS, N. L.; JOHNSTON, R. E.; SMITH, J. F.: "Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo", VIROLOGY, vol. 239, 1997, pages 389 - 401
RODRIGUEZ-MADOZ JR; PRIETO J; SMERDOU C: "Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas", MOL THER, vol. 12, 2005, pages 153 - 63, XP004974959, DOI: doi:10.1016/j.ymthe.2005.02.011
RYAN MD; DREW J.: "Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein", EMBO J, vol. 13, 1994, pages 928 - 33
SAJADI A; BENSADOUN JC; SCHNEIDER BL; LO BIANCO C; AEBISCHER P: "Transient striatal delivery of GDNF via encapsulated cells leads to sustained behavioral improvement in a bilateral model of Parkinson disease", NEUROBIOL DIS, vol. 22, 2006, pages 119 - 29, XP024901603, DOI: doi:10.1016/j.nbd.2005.10.006
SMERDOU, C.; P. LILJESTROM.: "Two-helper RNA system for production of recombinant Semliki forest virus particles", J VIROL, vol. 73, 1999, pages 1092 - 8
VAN STEGG ET AL., J.VIROL., vol. 38, 1981, pages 728 - 736
WALSH G; JEFFERIS R: "Post-translational modifications in the context of therapeutic proteins", NAT BIOTECHNOL, vol. 24, 2006, pages 1241 - 52, XP055024914, DOI: doi:10.1038/nbt1252
WILSON ET AL., J. CLIN. ENDOCRINOL. METAB., vol. 86, pages 4504 - 11
XIONG ET AL., SCIENCE, vol. 243, 1989, pages 1188 - 1191
XIONG, C.; LEVIS, R.; SHEN, P.; SCHLESINGER, S.; RICE, C. M.; HUANG, H. V.: "Sindbis virus: an efficient, broad host range vector for gene expression in animal cells", SCIENCE, vol. 243, 1989, pages 1188 - 1191, XP000023527

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001196A3 (en) * 2010-06-28 2012-02-23 Proyecto De Biomedicina Cima, S.L. Propagative alphaviral expression vectors not forming functional nuclecapsids
ES2523016A1 (en) * 2013-05-20 2014-11-20 3P Biopharmaceuticals Alphaviral vectors and cell lines for producing recombinant proteins
WO2014188042A1 (en) * 2013-05-20 2014-11-27 3P Biopharmaceuticals Alphaviral vectors and cell lines for producing recombinant proteins
US10011847B2 (en) 2013-05-20 2018-07-03 3P Biopharmaceuticals, S.L. Alphaviral vectors and cell lines for producing recombinant proteins
CN106754755A (en) * 2015-11-23 2017-05-31 中国科学院武汉物理与数学研究所 A kind of replicon of SFV and its application in sparse or delicate nerves meta-tag
CN106754755B (en) * 2015-11-23 2020-07-21 中国科学院武汉物理与数学研究所 Simplicin forest virus replicon and application thereof in sparse or fine neuron marking

Also Published As

Publication number Publication date
WO2011064437A3 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
ES2890023T3 (en) Alphavirus particles and preparation methods
US11845939B2 (en) Compositions and methods for enhancing gene expression
JP5627464B2 (en) How to generate alphavirus particles
ES2223051T3 (en) ALFAVIRUS cDNA VECTORS.
WO2021191630A1 (en) Coronavirus vaccine
Kwon et al. mRNA vaccines: the most recent clinical applications of synthetic mRNA
US20190185822A1 (en) Alphavirus replicon particle
US20230044997A1 (en) Synthetic, persistent rna constructs and methods of use for cell rejuvenation and for treatment
WO2011064437A2 (en) Viral vectors and methods used in the preparation of gdnf
Ansorena et al. A simple and efficient method for the production of human glycosylated glial cell line-derived neurotrophic factor using a Semliki Forest virus expression system
US20230046606A1 (en) Synthetic, persistent rna constructs with on/off mechanism for controlled expression and methods of use
US11873507B2 (en) Compositions and methods for expression of IL-12 and IL-1RA
US20080096274A1 (en) Recombinant alphavirus vectors and methods of using same
Ansorena-Artieda et al. A simple and efficient method for the production of human glycosylated glial cell line-derived neurotrophic factor using a Semliki Forest virus expression system
CA3181193A1 (en) Rna replicon for versatile and efficient gene expression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10812863

Country of ref document: EP

Kind code of ref document: A2