WO2001018886A2 - Organische lichtemittierende diode und herstellungsverfahren - Google Patents

Organische lichtemittierende diode und herstellungsverfahren Download PDF

Info

Publication number
WO2001018886A2
WO2001018886A2 PCT/DE2000/003108 DE0003108W WO0118886A2 WO 2001018886 A2 WO2001018886 A2 WO 2001018886A2 DE 0003108 W DE0003108 W DE 0003108W WO 0118886 A2 WO0118886 A2 WO 0118886A2
Authority
WO
WIPO (PCT)
Prior art keywords
glass
adhesive
organic light
glass substrate
emitting diode
Prior art date
Application number
PCT/DE2000/003108
Other languages
English (en)
French (fr)
Other versions
WO2001018886A3 (de
Inventor
Christoph Hamann
Alois Ambrugger
Wolfgang Rogler
Wolfgang Roth
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP00974302A priority Critical patent/EP1210739A2/de
Priority to US10/070,604 priority patent/US6798133B1/en
Priority to JP2001522608A priority patent/JP2003509814A/ja
Publication of WO2001018886A2 publication Critical patent/WO2001018886A2/de
Publication of WO2001018886A3 publication Critical patent/WO2001018886A3/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate

Definitions

  • the invention relates to components and a method for producing components.
  • Components have an optoelectronic functional element which is generally arranged on a substrate, in particular a glass substrate.
  • the optoelectronic functional element can be a light-emitting diode (LED), for example an organic light-emitting diode (OLED).
  • LED light-emitting diode
  • OLED organic light-emitting diode
  • ITO Indium Tin Oxide
  • the materials used to build LEDs or OLEDs are sometimes very sensitive to water and oxygen, they have to be encapsulated against environmental influences, ie they are arranged in a housing. This can be done, for example, by covering the LED or OLED arranged on a glass substrate with a glass plate and gluing this glass plate to the glass substrate (see: “Applied Physics Letters *, Vol. 65 (1994), Pages 2922 to 2924). The bonding is done, for example, with an epoxy resin.
  • a relatively thick adhesive joint is required so that moisture can penetrate into the cavity between the glass substrate and the glass plate via the adhesive layer.
  • an electroluminescent arrangement in which the housing, in which the electroluminescent element having an electroluminescent organic layer is enclosed, comprises a layer of a low-melting metal or a corresponding alloy which is attached to the electroluminescent element by means of an adhesive layer carrying substrate is bound (see: WO 97/46052).
  • WO 97/46052 a high level of tightness of the electrolum-escaping arrangement can be achieved, but this is associated with great effort and costs.
  • Another disadvantage is that the relatively high temperatures required to process the metal or alloy from the melt can damage the electroluminescent element.
  • An organic electroluminescent arrangement is known from EP-OS 0 776 147, in which the light-emitting diode is arranged in an airtight container in order to shield it from the external atmosphere. There is also a substance in the container - separate from the diode - for chemical absorption of moisture in the interior.
  • the container consists of a seal housing, a transparent substrate that covers this housing, and a Sealant that binds the substrate to the housing.
  • Housing and substrate can be made of glass.
  • Glass housings are usually made by casting or forming, i.e. Presses made.
  • the containers obtained are not very precise and the surfaces are smooth. In addition, the surfaces are not sufficiently flat.
  • the adhesive surfaces - with a tolerance of a few micrometers - must be flat. Therefore, with such containers, extensive reworking of the adhesive surfaces is required.
  • the object of the invention is to design components which contain an optoelectronic functional element in such a way that on the one hand the functional element is hermetically encapsulated, i.e. is not adversely affected by environmental influences, such as water and air, and cannot be mechanically damaged, and that, on the other hand, the encapsulation can be implemented in a relatively simple manner.
  • the glass cap together with the glass substrate forms a stable cavity in which the OLED is arranged; mechanical damage is therefore excluded. There is also no damage caused by environmental influences because the components are hermetically sealed are encapsulated, ie tightly closed, for which only a very narrow adhesive joint is required.
  • glass caps - instead of coatings made of metal - in connection with glass substrates has the advantage that glasses with an adapted coefficient of thermal expansion can be used. This minimizes the mechanical stress on the adhesive joint, such as occurs, for example, as a result of thermal stress on the component due to temperature cycles.
  • the glass cap which is both cover and frame, is made from a glass plate, namely by three-dimensional material removal by means of a blasting process.
  • a recess with a defined geometry and depth is formed.
  • Such a procedure is known in principle, namely for the introduction of ink tanks and breakthroughs in the cover glasses of ink printheads (see: DE-PS 40 18 132).
  • the glass caps can be made by sandblasting, i.e. using quartz sand.
  • quartz sand aluminum oxide, silicon oxide, silicon carbide or boron carbide can also be used as the abrasive.
  • the material is preferably removed from the glass plate by means of beam cutting.
  • This manufacturing process and the blasting media used can be found in DIN 8200.
  • the removal rate or the achievable depth of the recess depends on the relative movement between the workpiece and the blasting nozzle, on the type of blasting agent, on its average diameter, on the blasting pressure and on the distance from the nozzle to the substrate.
  • the glass caps according to the invention can thus be manufactured in a simple manner and no complex post-processing is required, as is the case in the usual way manufactured glass housing is the case. These glass housings also occur individually, and they must therefore be individually positioned and processed when gluing. However, individual processing is expensive and is not suitable for mass production, as is common in display technology.
  • the glass caps according to the invention can also be produced very easily with great benefits.
  • display technology utility sizes of 16 mch x are nowadays
  • a particularly preferred variant of the invention thus consists in producing a multiplicity of cutouts in a glass panel in a single operation in accordance with a layout given by a display to be encapsulated, and the separation is carried out only after the encapsulation.
  • the inner surface ie the inside of the cap
  • additional getter materials are used to bind moisture or oxygen, inorganic materials can be deposited on the rough surface by evaporation in a long-term stable manner.
  • Getter substances, dispersed in an organic adhesive can also be glued to the rough inside of the cap with long-term stability.
  • the glass parts to be joined together ie the glass cap and the glass substrate, normally have a relatively smooth surface at the common locations. Under certain circumstances, this can lead to wetting and thus liability problems when bonding, which could result in an adhesive joint with reduced tightness.
  • the invention therefore preferably provides that the glass cap at the edge, i.e. has a certain roughness at the points that are glued to the glass substrate. This is achieved by roughening these areas.
  • the roughening i.e. the surface treatment or modification of the edge of the glass cap is advantageously carried out in a manner corresponding to the manufacture of the glass cap itself, i.e. through material removal using a blasting process. By observing certain process parameters (blasting agent, blasting pressure, blasting distance and blasting time) it is possible that only a very small amount of material is removed.
  • the surface treatment results in a roughness of the glass which leads to an increase in the surface area and thus to an improved wetting and adhesion of the adhesive during the joining process; the roughness of the glass surface can be adjusted over a wide range.
  • the surface treatment also removes from the glass surface all impurities adsorbed on the glass, which may originate, for example, from glass production and which could impair the tightness of the adhesive joint. This eliminates the need for time-consuming cleaning steps before joining the
  • the glass cap is advantageously glued to the glass substrate by means of an organic adhesive.
  • An epoxy resin is preferably used for this.
  • a UV-curable adhesive serves particularly advantageously as the adhesive. The use of such an adhesive is advantageous for the encapsulation of OLEDs because the curing of the adhesive takes place on the one hand economically quickly and on the other hand is gentle on the material at low temperatures.
  • a particular advantage of glass caps that were produced by means of a blasting process results when using a UV-curable adhesive.
  • the roughness of the inside of the cap can be designed so that incident light rays are largely diffusely reflected by the choice of blasting conditions. This reduces the energy of the light rays to such an extent that radiation damage to the light-emitting diode, i.e. of the materials on the glass substrate can be completely avoided.
  • the organic light-emitting diodes which are to be encapsulated by a glass cap, are produced by known processes. These are, for example, spin coating when polymer solutions are processed, or vapor deposition when monomers are processed.
  • ITO is transparent and is used as an anode due to its electrical properties. If necessary, auxiliary layers such as hole- and electron-conducting layers are used. Metals such as calcium are vapor-deposited as the cathode.
  • the parts to be connected consist of a glass substrate on which the organic light-emitting diode is located and a glass cap. The parts to be joined are positioned in an inert, ie oxygen and water free, atmosphere. niert and glued together, for example with an organic adhesive.
  • the figure shows - not to scale - a schematic cross section through a component 10 according to the invention.
  • An organic light-emitting diode (OLED) 12 is arranged on a glass substrate 11.
  • the OLED 12 is covered by a glass cap 13 which is bonded to the glass substrate 11 at the edge 14.
  • the OLED 12 has the following components: a transparent electrode 15, for example made of ITO, an organic hole transport material 16, for example made of a conductive polymer, an organic electroluminescent material 17, for example a light-emitting polymer, and a metal electrode 18, for example made of calcium 19 and silver 20 is composed.
  • the organic electroluminescent material 17, i.e. the emitter (chromophore) also serves as an electron transport material.
  • the two functions can also be separate, in which case the electron transport material is arranged between the metal electrode and the emitter.
  • two parallel, 2 mm wide ITO strips with a spacing of 1 are placed on an ITO-coated glass substrate (edge length: 4 cm x 4 cm, thickness: 1.1 mm) using photolithography cm. Exposed areas are not detached in an alkaline medium; this protects the ITO. Exposed ITO with conc. HBr replaced.
  • a 70 n thick layer is spin-coated from an aqueous solution onto the ITO-structured glass substrate commercially available polyethylene dioxothiophene (PEDOT) applied. This layer is dried by an annealing process.
  • PEDOT polyethylene dioxothiophene
  • an emitter layer consisting of a commercial polyfluorene derivative with a thickness of 100 nm is applied from xylene. This layer is dried at a pressure of 10 "6 mbar. At the same pressure, two e 2 m wide calcium strips are evaporated at a distance of 1 cm as cathodes through a shadow mask. These metal strips are arranged at right angles to the ITO structures on the glass substrate The areas of the intersecting anode and cathode tracks, between which the polymers are located, represent the active area of the light-emitting diode. Silver strips with a thickness of 150 nm are vapor-deposited onto the calcium strips, likewise through a shadow mask However, no metal is vapor-deposited on the areas to be bonded, rather the organic layers are removed manually at these areas.
  • the diodes produced in this way are encapsulated with a glass cap.
  • the outer dimensions of the cap are 24 mm x 24 mm (thickness: 1.1 mm), the adhesive edge is 1 mm and the depth of the recess is 500 ⁇ m.
  • the parts to be joined are positioned in an oxygen-free and water-free atmosphere and glued together using an organic adhesive. If, for example, a voltage of 5 V is applied to the ITO or Ca / Ag lines at the edge of the glass substrate, the encapsulated diode lights up green.
  • 1.1 mm thick plane-parallel glass plates are used to manufacture the glass caps.
  • the glass plates are cleaned in an ultrasonic bath with acetone 10 mm and then 5 min in an oxygen plasma. Then the glass surface is photo-structured.
  • a photo-structurable film (75 ⁇ m thick), for example based on acrylic resin, is laminated on at 100 ° C. under moderate pressure.
  • a photoresist can alternatively be applied - by means of spin coating or screen printing.
  • exposure to UV light is carried out through a Cr exposure mask. The exposure time is chosen so that the material remains soft. A fully hardened film would be brittle and would be damaged during the blasting process.
  • blasting In blasting, a commercially available high-grade corundum with an average grain size of 30 ⁇ m is preferably used as the blasting medium. With a blasting pressure of preferably 5 bar, an injector blasting nozzle (as blasting nozzle), a distance nozzle / workpiece of 80 mm and an adapted relative movement between workpiece and blasting nozzle, one can
  • Example 2 When manufacturing glass caps with a roughened adhesive edge, the procedure is first as in Example 2. The decisive difference is that after the recess has been created, the lacquer layer protecting the cap edges is removed in an alkaline medium. The exposed edges of the cap are then subjected to a beam cutting process. This is done by extensive blasting with low pressure, preferably 3 bar. Corundum with an average grain size of 9 ⁇ m is used as the abrasive. With a blasting time of 30 s, glass cap edges with a roughness of around 30 rms are produced. The desired roughness can be set within wide limits by the grain size and the blasting time.
  • the glass caps are separated in the last step by known methods, such as sawing or breaking.
  • the parts to be joined during the production of the components ie the glass substrate with the organic light-emitting diodes located thereon and the glass caps, are positioned with respect to one another in an oxygen and water-free atmosphere and bonded to one another.
  • the bonding is done with an organic adhesive, preferably with a UV-curable epoxy resin.
  • the adhesive is applied by capillary casting or automatically using a dispenser, and curing with UV light in a suitable wavelength range. In this way, both Glass caps with a smooth as well as glass caps with a rough adhesive edge can be used.
  • Components manufactured according to Example 4 are stored in a climatic chamber at a temperature of 85 ° C and a relative humidity of 85%. Under appropriate conditions, components are stored in which the diodes are encapsulated with a glass cap that was produced by mechanical milling. While in these components the diodes failed after only 48 hours, the service life of the diodes in the components according to the invention could be improved to over 160 hours, both in the case of glass caps with a smooth and with a rough adhesive edge.

Abstract

Die Bauelemente nach der Erfindung weisen folgende Komponenten a uf: ein Glassubstrat (11), eine auf dem Glassubstrat (11) angeordnete organische lichtemittierende Diode (12) und eine über der organischen lichtemittierenden Diode (12) angeordnete Glaskappe (13), die am Rand (14) mit dem Glassubstrat (11) verklebt ist, wobei die Glaskappe aus einer Glasplatte durch dreidimensionalen Materialabtrag mittels eines Strahlverfahrens hergestellt ist.

Description

Beschreibung
Bauelemente und deren Herstellung
Die Erfindung betrifft Bauelemente und ein Verfahren zur Herstellung von Bauelementen.
Bauelemente weisen ein optoelektronisches Funktionselement auf, das im allgemeinen auf einem Substrat, insbesondere einem Glassubstrat, angeordnet ist. Das optoelektronische Funktionselement kann eine lichtemittierende Diode (LED) sein, beispielsweise eine organische lichtemittierende Diode (OLED) .
LEDs bzw. OLEDs bestehen aus mehreren Funktionsschichten und weisen beispielsweise folgenden Aufbau auf (siehe dazu: „Philips Journal of Research', Vol. 51 (1998), Seiten 467 bis 477) : Eine dünne ITO-Schicht (ITO = Indium Tin Oxide) als transparente Elektrode, eine leitende Polymerschicht, eine elektrolu ineszierende Schicht, d.h. eine Schicht aus lichtemittierendem Material, insbesondere aus einem lichtemittierenden Polymer, und eine Elektrode aus einem Metall mit geringer Austrittsarbeit.
Da die zum Aufbau von LEDs bzw. OLEDs verwendeten Materialien teilweise sehr empfindlich gegenüber Wasser und Sauerstoff sind, müssen sie gegen Umwelteinflüsse abgekapselt werden, d.h. sie werden in einem Gehäuse angeordnet. Dies kann beispielsweise in der Weise geschehen, daß die auf einem Glas- substrat angeordnete LED bzw. OLED mit einer Glasplatte abgedeckt wird und diese Glasplatte mit dem Glassubstrat verklebt wird (siehe dazu: „Applied Physics Letters*, Vol. 65 (1994), Seiten 2922 bis 2924). Die Verklebung erfolgt beispielsweise mit einem Epoxidharz. Hierbei ist allerdings eine relativ dicke Klebefuge erforderlich, so daß über die Klebeschicht Feuchtigkeit in den Hohlraum zwischen Glassubstrat und Glasplatte eindringen kann. Es ist auch bereits eine elektrolummeszierende Anordnung bekannt, bei der das Gehäuse, m welches das eine elektrolummeszierende organische Schicht aufweisende elektrolumi- neszierende Element eingeschlossen ist, eine Schicht aus einem niedrigschmelzenden Metall oder einer entsprechenden Legierung umfaßt, die mittels einer Klebeschicht an ein das elektrolummeszierende Element tragende Substrat gebunden ist (siehe: WO 97/46052). Auf diese Weise kann zwar eine hohe Dichtigkeit der elektrolum eszierenden Anordnung erreicht werden, dies ist aber mit einem großen Aufwand und hohen Kosten verbunden. Ein weiterer Nachteil besteht darin, daß durch die relativ hohen Temperaturen, die zur Verarbeitung des Metalls bzw. der Legierung aus der Schmelze erforderlich sind, das elektrolummeszierende Element geschadigt werden kann.
Dies gilt im Prinzip auch bei einem Verfahren, bei dem das organische Funktionselement, insbesondere eine OLED, unter Verwendung von Glaslot eingekapselt wird (deutsche Patent- anmeldung Akt.Z. 198 45 075.3). Die für das Prozessieren heutzutage verfugbarer Glaslote notwendigen Temperaturen fuhren nämlich bei OLEDs zu einer Schädigung der funktionel- len organischen Materialien. Außerdem ist hierbei zwischen dem Deckel des Gehäuses und dem Glassubstrat ein zusätzlicher Rahmen angeordnet, um eine mechanische Schädigung des OLED- Aufbaus zu vermeiden. Dies bedeutet aber zusätzliche Arbeitsschritte und Klebefugen, verbunden mit der Gefahr von Undichtigkeiten.
Aus der EP-OS 0 776 147 ist eine organische elektrolummeszierende Anordnung bekannt, bei der die lichtemittierende Diode in einem luftdichten Behalter angeordnet ist, um sie von der externen Atmosphäre abzuschirmen. Im Behalter ist außerdem - getrennt von der Diode - eine Substanz zur chemi- sehen Absorption von Feuchtigkeit im Innenraum vorhanden.
Der Behalter besteht aus einem Dichtungsgehause, einem transparenten Substrat, das dieses Gehäuse bedeckt, und einem Dichtungsmittel, welches das Substrat an das Gehäuse bindet. Gehäuse und Substrat können aus Glas bestehen.
Glasgehause werden üblicherweise durch Gießen oder Umformen, d.h. Pressen, hergestellt. Die dabei erhaltenen Behalter sind aber wenig präzise und die Oberflachen sind glatt. Außerdem sind die Oberflächen nicht hinreichend plan. Beim Versiegeln von OLEDs müssen die Klebeflachen aber - mit einer Toleranz von wenigen Mikrometern - plan sein. Deshalb ist bei derarti- gen Behältern ein aufwendiges Nachbearbeiten der Klebeflachen erforderlich.
Aufgabe der Erfindung ist es, Bauelemente, die ein optoelektronisches Funktionselement enthalten, derart auszugestalten, daß einerseits das Funktionselement hermetisch gekapselt ist, d.h. durch Umwelteinflüsse, wie Wasser und Luft, nicht beeinträchtigt wird und auch nicht mechanisch beschädigt werden kann, und daß andererseits die Kapselung in relativ einfacher Weise realisiert werden kann.
Dies wird erfindungsgemäß durch Bauelemente erreicht, die folgende Komponenten aufweisen:
• ein Glassubstrat
• eine auf dem Glassubstrat angeordnete organische licht- emittierende Diode und
• eine über der organischen lichtemittierenden Diode angeordnete und am Rand mit dem Glassubstrat verklebte Glaskappe, die aus einer Glasplatte durch dreidimensionalen Materialabtrag mittels eines Strahlverfahrens hergestellt ist.
Bei den Bauelementen nach der Erfindung bildet die Glaskappe zusammen mit dem Glassubstrat einen stabilen Hohlraum, in dem die OLED angeordnet ist; eine mechanische Schädigung ist so- mit ausgeschlossen. Auch eine Schädigung durch Umwelteinflusse tritt nicht auf, weil die Bauelemente hermetisch ab- gekapselt, d.h. dicht verschlossen sind, wozu lediglich eine sehr schmale Klebefuge erforderlich ist.
Die Verwendung von Glaskappen - anstelle von Überzügen aus Metall - in Verbindung mit Glassubstraten hat den Vorteil, daß Glaser mit angepaßtem thermischen Ausdehnungskoeffizient verwendet werden können. Dadurch laßt sich der mechanische Streß auf die Klebefuge, wie er beispielsweise infolge einer thermischen Belastung des Bauelements durch Temperaturzyklen entsteht, minimieren.
Die Glaskappe, die zugleich Abdeckung und Rahmen ist, wird aus einer Glasplatte hergestellt, und zwar durch emen dreidimensionalen Materialabtrag mittels eines Strahlverfahrens. Hierbei wird - mit hoher Präzision - eine Aussparung mit definierter Geometrie und Tiefe gebildet. Eine derartige Vorgehensweise ist im Prinzip bekannt, und zwar zum Einbringen von Tintenwannen und Durchbruchen in die Deckglaser von Tin- tendruckkopfen (siehe dazu: DE-PS 40 18 132) .
Die Glaskappen können durch Sandstrahlen hergestellt werden, d.h. mittels Quarzsand. Als Strahlmittel kann beispielsweise aber auch Alummiumoxid, Siliciumoxid, Siliciumcarbid oder Borcarbid verwendet werden.
Vorzugsweise erfolgt der Materialabtrag von der Glasplatte durch Strahlspanen. Dieses Fertigungsverfahren sowie die dabei verwendeten Strahlmittel sind DIN 8200 zu entnehmen. Die Abtragsrate bzw. die erzielbare Tiefe der Aussparung ist ab- hangig von der Relativbewegung zwischen Werkstuck und Strahldüse, von der Art des Strahlmittels, von dessen mittlerem Durchmesser, vom Strahldruck und vom Abstand der Düse zum Substrat.
Die Glaskappen nach der Erfindung können somit einfacher Weise hergestellt werden und es ist auch keine aufwendige Nachbearbeitung erforderlich, wie es bei in üblicher Weise hergestellten Glasgehausen der Fall ist. Diese Glasgehause fallen außerdem einzeln an, und sie müssen daher beim Verkleben einzeln positioniert und prozessiert werden. Eine Einzelprozessierung ist aber teuer und für eine Massen- fertigung, wie sie in der Displaytechnik üblich ist, nicht geeignet.
Im Gegensatz dazu können die Glaskappen nach der Erfindung sehr einfach auch in großen Nutzen hergestellt werden. In der Displaytechnik sind heutzutage Nutzengrößen von 16 mch x
16 inch und größer üblich. Die dafür notwendigen Glaskappen müssen für eine Massenfertigung in der gleichen Nutzengröße herstellbar sein. Dies läßt sich sehr einfach der Weise realisieren, daß entsprechende Glasplatten über photolitho- graphische Prozesse strukturiert werden und durch ein Strahlverfahren beispielsweise bis zu 150 Aussparungen - mit der gewünschten Form und Tiefe - in der Glasplatte erzeugt werden. Die Vereinzelung kann dann nach bekannten Verfahren erfolgen und findet in der Regel erst nach dem Fugeprozeß statt. Eine besonders bevorzugte Variante der Erfindung besteht somit darin, entsprechend einem durch ein zu verkapselndes Display vorgegebenen Layout eine Vielzahl von Aussparungen in einem Glasnutzen in einem einzigen Arbeitsgang herzustellen und die Vereinzelung erst nach dem Ver- kapseln durchzuführen. Ein zusätzlicher Vorteil besteht darin, daß sich nahezu jede gewünschte Form durch einfaches photolithographisches Strukturieren herstellen läßt.
Von Vorteil ist weiterhin, daß bei den durch ein Strahl- verfahren hergestellten Glaskappen die innere Oberflache, d.h. die Kappeninnenseite, aufgerauht ist. Werden nämlich zusätzlich Gettermaterialien eingesetzt, um Feuchtigkeit oder Sauerstoff zu binden, so lassen sich auf der rauhen Oberflache anorganische Materialien durch Verdampfen langzeit- stabil abscheiden. Auch können Gettersubstanzen, dispergiert einem organischen Klebstoff, langzeitstabil mit der rauhen Kappeninnenseite verklebt werden. Die aneinanderzufügenden Glasteile, d.h. Glaskappe und Glassubstrat, weisen an den gemeinsamen Stellen normalerweise eine relativ glatte Oberfläche auf. Dies kann bei der Verklebung unter Umstanden zu Benetzungs- und damit Haftungs- Problemen fuhren, woraus eine Klebefuge mit verringerter Dichtigkeit resultieren konnte.
Die Erfindung sieht daher vorzugsweise vor, daß die Glaskappe am Rand, d.h. an den Stellen, die mit dem Glassubstrat ver- klebt werden, eine gewisse Rauhigkeit aufweist. Dies wird dadurch erreicht, daß diese Stellen oberflächlich aufgerauht sind. Die Aufrauhung, d.h. die Oberflachenbehandlung bzw. -modifizierung des Randes der Glaskappe erfolgt dabei vorteilhaft in entsprechender Weise wie die Herstellung der Glaskappe selbst, d.h. durch einen Materialabtrag mittels eines Strahlverfahrens. Durch Einhalten bestimmter Verfahrensparameter (Strahlmittel, Strahldruck, Strahlabstand und Strahlzeit) ist es dabei möglich, daß nur ein sehr geringer Materialabtrag erfolgt.
Durch die Oberflächenbehandlung wird eine Rauhigkeit des Glases erreicht, die zu einer Vergrößerung der Oberflache und damit zu einer verbesserten Benetzung und Haftung des Klebstoffes beim Fugeprozeß fuhrt; die Rauhigkeit der Glasober- flache ist dabei in einem weiten Bereich einstellbar. Durch die Oberflachenbehandlung werden außerdem alle am Glas adsorbierten Verunreinigungen, die beispielsweise von der Glasherstellung herrühren und die Dichtigkeit der Klebefuge beeinträchtigen konnten, von der Glasoberflache entfernt. Damit entfallen aufwendige Reinigungsschritte vor dem Fugen der
Glasteile. Wegen des verbesserten Benetzungsverhaltens ergibt sich darüber hinaus keine Begrenzung bei der Wahl des Klebstoffes .
Vorteilhaft ist die Glaskappe mittels eines organischen Klebstoffes mit dem Glassubstrat verklebt. Dazu dient vorzugsweise ein Epoxidharz. Besonders vorteilhaft dient als Klebstoff ein UV-härtbarer Klebstoff. Die Verwendung eines derartigen Klebstoffes ist für die Verkapselung von OLEDs von Vorteil, weil die Härtung des Klebstoffes einerseits ökonomisch schnell und anderer- seits materialschonend bei niedrigen Temperaturen erfolgt.
Ein besonderer Vorteil von Glaskappen, die mittels eines Strahlverfahrens hergestellt wurden, ergibt sich bei der Verwendung eines UV-härtbaren Klebstoffes. Beim Strahlver- fahren kann nämlich - durch die Wahl der Strahlbedingungen - die Rauhigkeit der Kappeninnenseite so gestaltet werden, daß einfallende Lichtstrahlen weitestgehend diffus reflektiert werden. Dadurch wird die Energie der Lichtstrahlen soweit vermindert, daß eine Strahlenschädigung der lichte ittieren- den Diode, d.h. der auf dem Glassubstrat befindlichen Materialien, vollständig vermieden werden kann. Dies ist insbesondere dann von Vorteil, wenn die Glaskappe mittels eines UV-härtbaren Klebstoffes verklebt wird, weil dabei eine Abschattung strahlungsempfindlicher Bereiche nicht erforderlich ist.
Bei den Bauelementen nach der Erfindung erfolgt die Herstellung der organischen lichtemittierenden Dioden, die durch eine Glaskappe verkapselt werden sollen, nach bekannten Ver- fahren. Dies sind beispielsweise Spin-coating, wenn Polymerlösungen verarbeitet werden, oder Aufdampfen, wenn Monomere verarbeitet werden. Als Substrate werden ITO-beschichtete Gläser (ITO = Indium Tin Oxide) verwendet, wobei das ITO auch strukturiert sein kann. ITO ist transparent und wird wegen seiner elektrischen Eigenschaften als Anode verwendet. Falls erforderlich, werden Hilfsschichten, wie loch- und elektronenleitende Schichten, verwendet. Als Kathode werden Metalle, wie Calciu , aufgedampft. Die zu verbindenden Teile bestehen aus einem Glassubstrat, auf dem sich die organische licht- emittierende Diode befindet, und einer Glaskappe. Die zu fügenden Teile werden in einer inerten, d.h. insbesondere Sauerstoff- und wasserfreien Atmosphäre zueinander positio- niert und miteinander verklebt, beispielsweise mit einem organischen Kleber.
Anhand von Ausfuhrungsbeispielen und einer Figur soll die Erfindung noch naher erläutert werden.
Die Figur zeigt - nicht maßstäblich - einen schematischen Querschnitt durch ein Bauelement 10 nach der Erfindung. Dabei ist auf einem Glassubstrat 11 eine organische lichtemittie- rende Diode (OLED) 12 angeordnet. Die OLED 12 ist durch eine Glaskappe 13 abgedeckt, welche am Rand 14 mit dem Glassubstrat 11 verklebt ist. Die OLED 12 weist folgende Bestandteile auf: eine transparente Elektrode 15, beispielsweise aus ITO, ein organisches Lochtransportmaterial 16, beispielsweise aus einem leitenden Polymer, ein organisches elektrolummes- zierendes Material 17, beispielsweise ein lichtemittierendes Polymer, und eine Metallelektrode 18, die beispielsweise aus Calcium 19 und Silber 20 zusammengesetzt ist. Das organische elektrolummeszierende Material 17, d.h. der Emitter (Chromo- phor) , dient dabei gleichzeitig als Elektronentransportmate- rial. Die beiden Funktionen können aber auch getrennt sein, wobei dann das Elektronentransportmaterial zwischen Metallelektrode und Emitter angeordnet ist.
Beispiel 1
Herstellung von organischen lichtemittierenden Dioden
Zur Herstellung von lichtemittierenden Dioden auf Basis von Polymeren werden auf einem ITO-beschichteten Glassubstrat (Kantenlange: 4 cm x 4 cm, Dicke: 1,1 mm) mittels Photo- lithographie zwei zueinander parallele, 2 mm breite ITO- Streifen im Abstand von 1 cm erzeugt. Belichtete Stellen werden in einem alkalischen Medium nicht abgelost; dadurch wird das ITO geschützt. Freiliegendes ITO wird mit konz. HBr abgelöst. Auf das ITO-strukturierte Glassubstrat wird mittels Spin-coatmg aus wäßriger Losung eine 70 n dicke Schicht aus handelsüblichem Polyethylendioxothiophen (PEDOT) aufgebracht. Diese Schicht wird durch einen Temperprozeß getrocknet. Anschließend wird darauf - ebenfalls durch Spin-coatmg - aus Xylol eine Emitterschicht, bestehend aus einem handelsubli- chen Polyfluorenderivat, mit einer Dicke von 100 nm aufgebracht. Diese Schicht wird bei einem Druck von 10"6 mbar getrocknet. Beim gleichen Druck werden durch eine Schattenmaske zwei ]e 2 m breite Calciumstreifen im Abstand von 1 cm als Kathoden aufgedampft. Diese Metallstreifen sind rechtwinklig zu den auf dem Glassubstrat befindlichen ITO-Strukturen angeordnet. Die Flachen der sich kreuzenden Anoden- und Kathodenbahnen, zwischen denen sich die Polymeren befinden, stellen die aktive Flache der Leuchtdiode dar. Auf die Calcium- streifen werden - ebenfalls durch eine Schattenmaske - Sil- berstreifen mit einer Dicke von 150 nm aufgedampft. An den zu verklebenden Stellen wird allerdings kein Metall aufgedampft, an diesen Stellen werden vielmehr die organischen Schichten manuell abgezogen.
Zu Testzwecken werden vier von auf diese Weise hergestellte Dioden mit einer Glaskappe verkapselt. Die Außenmaße der Kappe betragen 24 mm x 24 mm (Dicke: 1,1 mm), der Kleberand betragt 1 mm und die Tiefe der Aussparung 500 μm. Die zu fugenden Teile werden in einer Sauerstoff- und wasserfreien Atmosphäre zueinander positioniert und miteinander verklebt, und zwar mit einem organischen Klebstoff. Wird bei diesem Bauelement an die ITO- bzw. Ca/Ag-Ausleitungen am Rande des Glassubstrats beispielsweise eine Spannung von 5 V angelegt, so leuchtet die verkapselte Diode grün.
Beispiel 2
Herstellung von Glaskappen mit glattem Kleberand
Zur Herstellung der Glaskappen werden 1,1 mm dicke planparallele Glasplatten verwendet. Die Glasplatten werden in einem Ultraschallbad mit Aceton 10 mm gereinigt und anschließend 5 min in einem Sauerstoffplasma. Dann erfolgt eine Photo- strukturierung der Glasoberfläche. Hierzu wird eine photo- strukturierbare Folie (Dicke 75 μm) , beispielsweise auf Acrylharzbasis, bei 100°C unter moderatem Druck auflaminiert . Anstelle der Folie kann alternativ aber auch ein Photolack - mittels Spin-coating oder Siebdruck - aufgebracht werden. Nachfolgend wird durch eine Cr-Belichtungsmaske mit UV-Licht belichtet. Die Belichtungszeit wird so gewählt, daß das Material noch weich bleibt. Eine vollständig ausgehärtete Folie wäre nämlich spröde und würde beim Strahlprozeß geschädigt. Die Entwicklung erfolgt im vorliegenden Fall alkalisch, beispielsweise mit wäßriger 1 %iger Na2C03-Lösung. Hierbei werden die nicht-belichteten Stellen, an denen ein Strahlspanen erfolgen soll, abgelöst. Diese Stellen entsprechen den zu erzeugenden Aussparungen. Die Glasplatten sind nun dort, wo beim Strahlspanprozeß kein Materialabtrag stattfinden soll, d.h. an den Rändern, durch eine elastische Kunststoffmaske geschützt.
Beim Strahlspanen wird als Strahlmittel vorzugsweise ein handelsüblicher Edelkorund mit einer mittleren Korngröße von 30 μm verwendet. Bei einem Strahldruck von vorzugsweise 5 bar, einer Injektorstrahldüse (als Strahldüse) , einem Abstand Düse/Werkstück von 80 mm und einer angepaßten Relativ- bewegung zwischen Werkstück und Strahldüse können bei einer
Strahlzeit vom 10 min Aussparungen mit einer Tiefe von 500 nm erhalten werden. Nach der Erzeugung der Aussparungen wird die die Kappenränder schützende Photolackfolie bzw. der Photolack entfernt. Dies geschieht mit einem alkalischen Medium, bei- spielsweise mit wäßriger Na2C03-Lösung. Danach erfolgt, falls erforderlich, die Vereinzelung der Glaskappen, beispielsweise durch Sägen oder Brechen. Beispiel 3
Herstellung von Glaskappen mit rauhem Kleberand
Bei der Herstellung von Glaskappen mit aufgerauhtem Kleberand wird zunächst entsprechend Beispiel 2 vorgegangen. Der entscheidende Unterschied besteht darin, daß nach der Erzeugung der Aussparung die die Kappenränder schützende Lackschicht in einem alkalischen Medium abgelöst wird. Die dann freiliegen- den Ränder der Kappe werden einem Strahlspanverfahren unterworfen. Dies erfolgt durch flächiges Überstrahlen mit geringem Druck, vorzugsweise 3 bar. Als Strahlmittel wird Korund mit einer mittleren Korngröße von 9 μm verwendet. Bei einer Strahlzeit von 30 s werden Glaskappenränder mit einer Rauhig- keit der von etwa 30 rms hergestellt. Die gewünschte Rauhigkeit kann durch die Korngröße und die Strahlzeit in weiten Grenzen eingestellt werden.
Auch hierbei erfolgt, falls erforderlich, im letzten Schritt die Vereinzelung der Glaskappen nach bekannten Verfahren, wie Sägen oder Brechen.
Beispiel 4
Herstellung von Bauelementen
Die bei der Herstellung der Bauelemente zu fügenden Teile, d.h. das Glassubstrat mit den darauf befindlichen organischen lichtemittierenden Dioden und die Glaskappen, werden in einer insbesondere Sauerstoff- und wasserfreien Atmosphäre zueinander positioniert und miteinander verklebt. Die Verklebung erfolgt mit einem organischen Klebstoff, vorzugsweise mit einem UV-härtbaren Epoxidharz. Die Applikation des Klebstoffes erfolgt durch Kapillarverguß oder automatisch mittels eines Dispensers, die Härtung mit UV-Licht in einem geeigneten Wellenlängenbereich. In dieser Weise kann sowohl bei Glaskappen mit glattem als auch bei Glaskappen mit rauhem Kleberand vorgegangen werden.
Beispiel 5
Test der Bauelemente mit gekapselten organischen lichtemittierenden Dioden
Entsprechend Beispiel 4 hergestellte Bauelemente werden in einer Klimakammer bei einer Temperatur von 85°C und einer relativen Feuchte von 85 % gelagert. Unter entsprechenden Bedingungen werden Bauelemente gelagert, bei denen die Dioden mit einer Glaskappe gekapselt sind, die durch mechanisches Fräsen hergestellt wurde. Während bei diesen Bauelementen die Dioden bereits nach 48 h ausfielen, konnte bei den Bauelementen nach der Erfindung die Standzeit der Dioden auf über 160 h verbessert werden, und zwar sowohl bei Glaskappen mit glattem als auch mit rauhem Kleberand.

Claims

Patentansprüche
1. Bauelemente, g e k e n n z e i c h n e t durch
• ein Glassubstrat (11) • eine auf dem Glassubstrat (11) angeordnete organische lichtemittierende Diode (12) und
• eine über der organischen lichtemittierenden Diode (12) angeordnete und am Rand (14) mit dem Glassubstrat (11) verklebte Glaskappe (13), die aus einer Glasplatte durch dreidimensionalen Materialabtrag mittels eines Strahlverfahrens hergestellt ist.
2. Bauelemente nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß der Rand der Glaskappe oberflächlich aufgerauht ist.
3. Bauelemente nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Glaskappe mittels eines organischen Klebstoffes mit dem Glassubstrat verklebt ist.
4. Bauelemente nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , daß der Klebstoff UV-härtbar ist.
5. Bauelemente nach Anspruch 3 oder 4, d a d u r c h g e k e n n z e i c h n e t , daß der Klebstoff ein Epoxidharz ist.
6. Verfahren zur Herstellung von Bauelementen nach einem oder mehreren der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß in einer Glasplatte durch dreidimensionalen Materialabtrag mittels eines Strahlverfahrens eine Vielzahl von Aussparungen erzeugt wird, daß unter Verwendung dieser Glasplatte eine entsprechende Anzahl von auf einem Substrat entsprechend angeordneten organischen lichtemittierenden Dioden verkapselt wird, und daß nachfol- gend die dabei erhaltenen Bauelemente zumindest teilweise vereinzelt werden.
PCT/DE2000/003108 1999-09-09 2000-09-07 Organische lichtemittierende diode und herstellungsverfahren WO2001018886A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00974302A EP1210739A2 (de) 1999-09-09 2000-09-07 Organische lichtemittierende diode und herstellungsverfahren
US10/070,604 US6798133B1 (en) 1999-09-09 2000-09-07 Glass cover and process for producing a glass cover
JP2001522608A JP2003509814A (ja) 1999-09-09 2000-09-07 構成エレメントおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19943148.5 1999-09-09
DE19943148 1999-09-09

Publications (2)

Publication Number Publication Date
WO2001018886A2 true WO2001018886A2 (de) 2001-03-15
WO2001018886A3 WO2001018886A3 (de) 2001-07-26

Family

ID=7921382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003108 WO2001018886A2 (de) 1999-09-09 2000-09-07 Organische lichtemittierende diode und herstellungsverfahren

Country Status (5)

Country Link
US (1) US6798133B1 (de)
EP (1) EP1210739A2 (de)
JP (1) JP2003509814A (de)
TW (1) TW494590B (de)
WO (1) WO2001018886A2 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10045204A1 (de) * 2000-09-13 2002-04-04 Siemens Ag Träger für eine OLED und Verfahren zur Herstellung eines Trägers für eine OLED
WO2003003481A2 (de) * 2001-06-27 2003-01-09 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines polymerfreien bereichs auf einem substrat
GB2383192A (en) * 2001-09-05 2003-06-18 Light Display Corp G Encapsulation structure, method and apparatus for organic light-emitting diodes
EP1359628A2 (de) * 2002-05-03 2003-11-05 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Verfahren zur Verkapselung eines Bauelements auf Basis organischer Halbleiter
WO2004017441A1 (en) * 2002-08-17 2004-02-26 Cambridge Display Technology Limited Organic optoelectronic device encapsulation package
WO2004086528A2 (de) * 2003-03-28 2004-10-07 Siemens Aktiengesellschaft Feldeffektelektroden für organische optoelektronische bauelemente
DE10236855B4 (de) * 2002-08-07 2006-03-16 Samsung SDI Co., Ltd., Suwon Gehäuseeinheit zur Verkapselung von Bauelementen und Verfahren zu deren Herstellung
DE10044841B4 (de) * 2000-09-11 2006-11-30 Osram Opto Semiconductors Gmbh Plasmaverkapselung für elektronische und mikroelektronische Bauelemente wie OLEDs sowie Verfahren zu dessen Herstellung
US7193364B2 (en) 2002-09-12 2007-03-20 Osram Opto Semiconductors (Malaysia) Sdn. Bhd Encapsulation for organic devices
US7224116B2 (en) 2002-09-11 2007-05-29 Osram Opto Semiconductors Gmbh Encapsulation of active electronic devices
US7365442B2 (en) 2003-03-31 2008-04-29 Osram Opto Semiconductors Gmbh Encapsulation of thin-film electronic devices
US20150162562A1 (en) * 2001-02-01 2015-06-11 Semiconductor Energy Laboratory Co., Ltd. Display Device and Manufacturing Method Thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1386340B1 (de) 2001-03-22 2007-10-31 Lumimove, Inc. Beleuchtetes anzeigesystem und prozess
JP2005302605A (ja) * 2004-04-14 2005-10-27 Canon Inc 半導体装置
FR2871651A1 (fr) * 2004-06-09 2005-12-16 Thomson Licensing Sa Capot en verre et boitier d'encapsulation de composants electroniques dote d'un tel capot
US7220040B2 (en) * 2004-11-12 2007-05-22 Harris Corporation LED light engine for backlighting a liquid crystal display
JP2007035536A (ja) * 2005-07-29 2007-02-08 Rohm Co Ltd フラットパネルディスプレイ
ATE501625T1 (de) * 2006-12-12 2011-03-15 Koninkl Philips Electronics Nv Spannungsbetriebene schichtanordnung
TW201002126A (en) * 2007-12-21 2010-01-01 Du Pont Encapsulation assembly for electronic devices
US8404095B2 (en) * 2009-06-02 2013-03-26 The United States Of America, As Represented By The Secretary Of The Navy Preparing electrodes for electroplating
DE102011003969B4 (de) * 2011-02-11 2023-03-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines optoelektronischen Bauelements
KR101574686B1 (ko) * 2011-06-08 2015-12-07 엘지디스플레이 주식회사 유기 발광장치와 이의 제조방법
JP6182909B2 (ja) * 2013-03-05 2017-08-23 株式会社リコー 有機el発光装置の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1366678A (en) * 1971-11-05 1974-09-11 Gen Electric Co Ltd Electroluminescent devices and their manufacture
EP0776147A1 (de) * 1995-11-24 1997-05-28 Pioneer Electronic Corporation Organisches elektrolumineszentes Element
EP0781075A1 (de) * 1994-09-08 1997-06-25 Idemitsu Kosan Company Limited Verfahren zur abdichtung eines organischen elektrolumineszenten elements und organisches elektrolumineszentes element
EP0910228A1 (de) * 1997-10-16 1999-04-21 TDK Corporation Organische elektrolumineszente Vorrichtung
EP0969700A1 (de) * 1998-06-12 2000-01-05 TDK Corporation Organische elektrolumineszente Anzeige-Vorrichtung
WO2000069002A1 (en) * 1999-05-11 2000-11-16 The Dow Chemical Company An electroluminescent or photocell device having protective packaging

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3278611B2 (ja) * 1998-05-18 2002-04-30 日本電気株式会社 有機el素子の封止方法
US7008658B2 (en) 2002-05-29 2006-03-07 The Boc Group, Inc. Apparatus and method for providing treatment to a continuous supply of food product by impingement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1366678A (en) * 1971-11-05 1974-09-11 Gen Electric Co Ltd Electroluminescent devices and their manufacture
EP0781075A1 (de) * 1994-09-08 1997-06-25 Idemitsu Kosan Company Limited Verfahren zur abdichtung eines organischen elektrolumineszenten elements und organisches elektrolumineszentes element
EP0776147A1 (de) * 1995-11-24 1997-05-28 Pioneer Electronic Corporation Organisches elektrolumineszentes Element
EP0910228A1 (de) * 1997-10-16 1999-04-21 TDK Corporation Organische elektrolumineszente Vorrichtung
EP0969700A1 (de) * 1998-06-12 2000-01-05 TDK Corporation Organische elektrolumineszente Anzeige-Vorrichtung
WO2000069002A1 (en) * 1999-05-11 2000-11-16 The Dow Chemical Company An electroluminescent or photocell device having protective packaging

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10044841B4 (de) * 2000-09-11 2006-11-30 Osram Opto Semiconductors Gmbh Plasmaverkapselung für elektronische und mikroelektronische Bauelemente wie OLEDs sowie Verfahren zu dessen Herstellung
DE10045204A1 (de) * 2000-09-13 2002-04-04 Siemens Ag Träger für eine OLED und Verfahren zur Herstellung eines Trägers für eine OLED
US20150162562A1 (en) * 2001-02-01 2015-06-11 Semiconductor Energy Laboratory Co., Ltd. Display Device and Manufacturing Method Thereof
WO2003003481A2 (de) * 2001-06-27 2003-01-09 Osram Opto Semiconductors Gmbh Verfahren zur herstellung eines polymerfreien bereichs auf einem substrat
WO2003003481A3 (de) * 2001-06-27 2003-07-31 Siemens Ag Verfahren zur herstellung eines polymerfreien bereichs auf einem substrat
US7026186B2 (en) 2001-06-27 2006-04-11 Osram Opto Semiconductors Gmbh Method for producing polymer-free area on a substrate
GB2383192A (en) * 2001-09-05 2003-06-18 Light Display Corp G Encapsulation structure, method and apparatus for organic light-emitting diodes
GB2383192B (en) * 2001-09-05 2003-12-17 Light Display Corp G Encapsulation structure, method, and apparatus for organic light-emitting diodes
US6936963B2 (en) 2002-05-03 2005-08-30 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Process for encapsulating a component made of organic semiconductors
EP1359628A3 (de) * 2002-05-03 2006-03-22 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Verfahren zur Verkapselung eines Bauelements auf Basis organischer Halbleiter
DE10219951A1 (de) * 2002-05-03 2003-11-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Verkapselung eines Bauelements auf Basis organischer Halbleiter
EP1359628A2 (de) * 2002-05-03 2003-11-05 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Verfahren zur Verkapselung eines Bauelements auf Basis organischer Halbleiter
DE10236855B4 (de) * 2002-08-07 2006-03-16 Samsung SDI Co., Ltd., Suwon Gehäuseeinheit zur Verkapselung von Bauelementen und Verfahren zu deren Herstellung
GB2407436A (en) * 2002-08-17 2005-04-27 Cambridge Display Tech Ltd Organic optoelectronic device encapsulation package
WO2004017441A1 (en) * 2002-08-17 2004-02-26 Cambridge Display Technology Limited Organic optoelectronic device encapsulation package
GB2407436B (en) * 2002-08-17 2006-07-05 Cambridge Display Tech Ltd Organic optoelectronic device encapsulation package
US7224116B2 (en) 2002-09-11 2007-05-29 Osram Opto Semiconductors Gmbh Encapsulation of active electronic devices
US7193364B2 (en) 2002-09-12 2007-03-20 Osram Opto Semiconductors (Malaysia) Sdn. Bhd Encapsulation for organic devices
WO2004086528A2 (de) * 2003-03-28 2004-10-07 Siemens Aktiengesellschaft Feldeffektelektroden für organische optoelektronische bauelemente
WO2004086528A3 (de) * 2003-03-28 2005-12-08 Siemens Ag Feldeffektelektroden für organische optoelektronische bauelemente
US7365442B2 (en) 2003-03-31 2008-04-29 Osram Opto Semiconductors Gmbh Encapsulation of thin-film electronic devices

Also Published As

Publication number Publication date
TW494590B (en) 2002-07-11
JP2003509814A (ja) 2003-03-11
WO2001018886A3 (de) 2001-07-26
EP1210739A2 (de) 2002-06-05
US6798133B1 (en) 2004-09-28

Similar Documents

Publication Publication Date Title
WO2001018886A2 (de) Organische lichtemittierende diode und herstellungsverfahren
DE102004010000B4 (de) Verfahren und Vorrichtung zur Herstellung einer organischen EL-Anzeigevorrichtung
DE102006019118B4 (de) Bauelement mit optischer Markierung und Verfahren zur Herstellung
WO2007003502A2 (de) Parylen-beschichtung und verfahren zum herstellen einer parylen-beschichtung
WO2006082111A1 (de) Oled-verkapselung mit wasserdampf- und sauerstoff-absorbierenden zwischenschichten
EP1939953B1 (de) Lichtemittierende Vorrichtung
DE102010038554A1 (de) Optoelektronisches Halbleiterbauelement und zugehöriges Herstellverfahren
EP1495491A2 (de) Verfahren zum verbinden von substraten und verbundelement
WO2011012371A1 (de) Verfahren zur herstellung eines bauteils mit mindestens einem organischen material und bauteil mit mindestens einem organischen material
DE10222964B4 (de) Verfahren zur Gehäusebildung bei elektronischen Bauteilen sowie so hermetisch verkapselte elektronische Bauteile
WO2010079038A1 (de) Verfahren zur herstellung eines organischen optoelektronischen bauelements und organisches otpoelektronisches baulelement
EP1495153B1 (de) Verfahren zur beschichtung von metalloberflächen
WO2016045668A1 (de) Verfahren zum aufbringen einer schutzschicht, schutzschicht selbst und halbfabrikat mit einer schutzschicht
DE102004049955B4 (de) Verfahren zur Herstellung eines optischen Bauelements, insbesondere einer OLED
EP1495154B1 (de) Verfahren zur gehäusebildung bei elektronischen bauteilen so wie so hermetisch verkapselte elektronische bauteile
EP2425469B1 (de) Bauteil mit einem ersten und einem zweiten substrat und verfahren zu dessen herstellung
DE10236855B4 (de) Gehäuseeinheit zur Verkapselung von Bauelementen und Verfahren zu deren Herstellung
DE102007046730A1 (de) Organisches elektronisches Bauelement, Herstellungsverfahren dazu sowie Verwendung
WO2017029367A1 (de) Verfahren zur herstellung eines optoelektronischen bauelements und optoelektronisches bauelement
WO2003003481A2 (de) Verfahren zur herstellung eines polymerfreien bereichs auf einem substrat
DE102019112472B3 (de) Verfahren zur Herstellung eines ein Trägersubstrat aufweisenden Displays sowie ein nach diesem Verfahren hergestelltes Trägersubstrat
DE10040144A1 (de) Elektrolumineszenzvorrichtung mit organischem Dünnfilm
DE102014112696B4 (de) Organisches Bauelement
WO2008037614A2 (de) Verfahren zum herstellen einer organischen leuchtdiode und organische leuchtdiode
WO2017118574A1 (de) Verfahren zur herstellung von organischen leuchtdioden und organische leuchtdiode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000974302

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 522608

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000974302

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10070604

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2000974302

Country of ref document: EP